231 research outputs found
Diffusion Effects on the Breakdown of a Linear Amplifier Model Driven by the Square of a Gaussian Field
We investigate solutions to the equation , where is a Gaussian stochastic field
with covariance , and . It is shown that the
coupling at which the -th moment
diverges at time $t$, is always less or equal for ${\cal D}>0$ than for ${\cal
D}=0$. Equality holds under some reasonable assumptions on $C$ and, in this
case, $\lambda_{cN}(t)=N\lambda_c(t)$ where $\lambda_c(t)$ is the value of
$\lambda$ at which diverges.
The case is solved for a class of . The dependence of
on is analyzed. Similar behavior is conjectured when
diffusion is replaced by diffraction, , the case of
interest for backscattering instabilities in laser-plasma interaction.Comment: 19 pages, in LaTeX, e-mail addresses: [email protected],
[email protected], [email protected],
[email protected]
A Note on the Generalized Friedmann Equations for a Thick Brane
Within our thick brane approach previously used to obtain the cosmological
evolution equations on a thick brane embedded in a five-dimensional
Schwarzschild Anti-de Sitter spacetime it is explicitly shown that the
consistency of these equations with the energy conservation equation requires
that, in general, the thickness of the brane evolves in time. This varying
brane thickness entails the possibility that both Newton's gravitational
constant and the effective cosmological constant are time
dependent.Comment: 6 pages,To appear in GR
Terahertz imaging of sub-wavelength particles with Zenneck surface waves
Impact of sub-wavelength-size dielectric particles on Zenneck surface waves on planar metallic antennas is investigated at terahertz (THz) frequencies with THz near-field probe microscopy. Perturbations of the surface waves show the particle presence, despite its sub-wavelength size. The experimental configuration, which utilizes excitation of surface waves at metallic edges, is suitable for THz imaging of dielectric sub-wavelength size objects. As a proof of concept, the effects of a small strontium titanate rectangular particle and a titanium dioxide sphere on the surface field of a bow-tie antenna are experimentally detected and verified using full-wave simulations
Resonant tunneling diodes as sources for millimeter and submillimeter wavelengths
High-quality Resonant Tunneling Diodes have been fabricated and tested as sources for millimeter and submillimeter wavelengths. The devices have shown excellent I-V characteristics with peak-to-valley current ratios as high as 6:1 and current densities in the range of 50-150 kA/cm(exp 2) at 300 K. Used as local oscillators, the diodes are capable of state of the art output power delivered by AlGaAs-based tunneling devices. As harmonic multipliers, a frequency of 320 GHz has been achieved by quintupling the fundamental oscillation of a klystron source
Investigation on reconstruction methods applied to 3D terahertz computed tomography
International audience3D terahertz computed tomography has been performed using a monochromatic millimeter wave imaging system coupled with an infrared temperature sensor. Three different reconstruction methods (standard back-projection algorithm and two iterative analysis) have been compared in order to reconstruct large size 3D objects. The quality (intensity, contrast and geometric preservation) of reconstructed cross-sectional images has been discussed together with the optimization of the number of projections. Final demonstration to real-life 3D objects has been processed to illustrate the potential of the reconstruction methods for applied terahertz tomography
Efficient compact modelling of UTC-photodiode towards terahertz communication system design
Monolithic optoelectronic integrated circuits, OEICs are seen as key enabling technologies to minimal power loss criteria. Monolithic OEICs combine, on the same die, cutting-edge optical devices and high speed III-V electronics able to generate terahertz signal targeting beyond-5G networks. Computationally efficient compact models compatible with existing software tool and design flow are essential for timely and cost-effective OEIC achievement. The analog nature of photonic devices wholly justifies the use of methodologies alike the ones employed in electronic design automation, through implementation of accurate (and SPICE-compatible) compact models. This multidisciplinary work, describes an efficient compact model for Uni-Traveling Carrier photodiodes (UTC PD) which is a key component for OEICs. Its equations feature the UTC PD electronic transport and frequency response along with its photocurrent under applied optical power. It also dynamically takes into account the device junction temperature, accounting for the self-heating effect. Excellent agreement between model and measurements as well as model scalability (several geometries have been validated) has been achieved that marks the first demonstration of a multi-physics, computationally efficient and versatile compact model for UTC-PDs
On the thin-shell limit of branes in the presence of Gauss-Bonnet interactions
In this paper we study thick-shell braneworld models in the presence of a
Gauss-Bonnet term. We discuss the peculiarities of the attainment of the
thin-shell limit in this case and compare them with the same situation in
Einstein gravity. We describe the two simplest families of thick-brane models
(parametrized by the shell thickness) one can think of. In the thin-shell
limit, one family is characterized by the constancy of its internal density
profile (a simple structure for the matter sector) and the other by the
constancy of its internal curvature scalar (a simple structure for the
geometric sector). We find that these two families are actually equivalent in
Einstein gravity and that the presence of the Gauss-Bonnet term breaks this
equivalence. In the second case, a shell will always keep some non-trivial
internal structure, either on the matter or on the geometric sectors, even in
the thin-shell limit.Comment: 17 pages, 2 figures, RevTeX 4. Revised version accepted for
publication in Physical Review
Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling
We present an analytical model describing the full electromagnetic propagation in a THz time-domain spectroscopy (THz-TDS) system, from the THz pulses via Optical Rectification to the detection via Electro Optic-Sampling. While several investigations deal singularly with the many elements that constitute a THz-TDS, in our work we pay particular attention to the modelling of the time-frequency behaviour of all the stages which compose the experimental set-up. Therefore, our model considers the following main aspects: (i) pump beam focusing into the generation crystal; (ii) phase-matching inside both the generation and detection crystals; (iii) chromatic dispersion and absorption inside the crystals; (iv) Fabry-Perot effect; (v) diffraction outside, i.e. along the propagation, (vi) focalization and overlapping between THz and probe beams, (vii) electro-optic sampling. In order to validate our model, we report on the comparison between the simulations and the experimental data obtained from the same set-up, showing their good agreement
Cosmological equations and Thermodynamics on Apparent Horizon in Thick Braneworld
We derive the generalized Friedmann equation governing the cosmological
evolution inside the thick brane model in the presence of two curvature
correction terms: a four-dimensional scalar curvature from induced gravity on
the brane, and a five-dimensional Gauss-Bonnet curvature term. We find two
effective four-dimensional reductions of the Friedmann equation in some limits
and demonstrate that they can be rewritten as the first law of thermodynamics
on the apparent horizon of thick braneworld.Comment: 25 pages, no figure, a definition corrected, several references
added, more motivation and discussio
- …