19 research outputs found

    Dedication in memoriam

    Get PDF

    Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas

    Get PDF
    Phylogenetic asymmetry is common throughout the tree of life and results from contrasting patterns of speciation and extinction in the paired descendant lineages of ancestral nodes. On the depauperate side of a node, we find extant ´relict´ taxa that sit atop long, unbranched lineages. Here, we show that a tiny, pale green, inconspicuous and poorly known cicada in the genus Derotettix, endemic to degraded salt-plain habitats in arid regions of central Argentina, is a relict lineage that is sister to all other modern cicadas. Nuclear and mitochondrial phylogenies of cicadas inferred from probe-based genomic hybrid capture data of both target and non-target loci and a morphological cladogram support this hypothesis. We strengthen this conclusion with genomic data from one of the cicada nutritional bacterial endosymbionts, Sulcia, an ancient and obligate endosymbiont of the larger plant-sucking bugs (Auchenorrhyncha) and an important source of maternally inherited phylogenetic data. We establish Derotettiginae subfam. nov. as a new, monogeneric, fifth cicada subfamily, and compile existing and new data on the distribution, ecology and diet of Derotettix. Our consideration of the palaeoenvironmental literature and host-plant phylogenetics allows us to predict what might have led to the relict status of Derotettix over 100 Myr of habitat change in South America.Fil: Simon, Chris. University of Connecticut; Estados UnidosFil: Gordon, Eric R. L.. University of Connecticut; Estados UnidosFil: Moulds, M.S.. Australian Museum Research Institute; AustraliaFil: Cole, Jeffrey A.. Pasadena City College; Estados UnidosFil: Haji, Diler. University of Connecticut; Estados UnidosFil: Lemmon, Alan R.. Florida State University; Estados UnidosFil: Lemmon, Emily Moriarty. Florida State University; Estados UnidosFil: Kortyna, Michelle. Florida State University; Estados UnidosFil: Nazario, Katherine. University of Connecticut; Estados UnidosFil: Wade, Elizabeth J.. Curry College. Department of Natural Sciences and Mathematics; Estados Unidos. University of Connecticut; Estados UnidosFil: Meister, Russell C.. University of Connecticut; Estados UnidosFil: Goemans, Geert. University of Connecticut; Estados UnidosFil: Chiswell, Stephen M.. National Institute of Water and Atmospheric Research; Nueva ZelandaFil: Pessacq, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Centro de Investigación Esquel de Montaña y Estepa Patagónica. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigación Esquel de Montaña y Estepa Patagónica; ArgentinaFil: Veloso, Claudio. Universidad de Chile; ChileFil: McCutcheon, John P.. University of Montana; Estados UnidosFil: Lukasik, Piotr. University of Montana; Estados Unidos. Swedish Museum of Natural History. Department of Bioinformatics and Genetics; Sueci

    A molecular phylogeny of the cicadas (Hemiptera: Cicadidae) with a review of tribe and subfamily classification:

    Get PDF
    A molecular phylogeny and a review of family-group classification are presented for 137 species (ca. 125 genera) of the insect family Cicadidae, the true cicadas, plus two species of hairy cicadas (Tettigarctidae) and two outgroup species from Cercopidae. Five genes, two of them mitochondrial, comprise the 4992 base-pair molecular dataset. Maximum-likelihood and Bayesian phylogenetic results are shown, including analyses to address potential base composition bias. Tettigarcta is confirmed as the sister-clade of the Cicadidae and support is found for three subfamilies identified in an earlier morphological cladistic analysis. A set of paraphyletic deep-level clades formed by African genera are together named as Tettigomyiinae n. stat. Taxonomic reassignments of genera and tribes are made where morphological examination confirms incorrect placements suggested by the molecular tree, and 11 new tribes are defined (Arenopsaltriini n. tribe, Durangonini n. tribe, Katoini n. tribe, Lacetasini n. tribe, Macrotristriini n. tribe, Malagasiini n. tribe, Nelcyndanini n. tribe, Pagiphorini n. tribe, Pictilini n. tribe, Psaltodini n. tribe, and Selymbriini n. tribe). Tribe Tacuini n. syn. is synonymized with Cryptotympanini, and Tryellina n. syn. is synonymized with an expanded Tribe Lamotialnini. Tribe Hyantiini n. syn. is synonymized with Fidicinini. Tribe Sinosenini is transferred to Cicadinae from Cicadettinae, Cicadatrini is moved to Cicadettinae from Cicadinae, and Ydiellini and Tettigomyiini are transferred to Tettigomyiinae n. stat from Cicadettinae. While the subfamily Cicadinae, historically defined by the presence of timbal covers, is weakly supported in the molecular tree, high taxonomic rank is not supported for several earlier clades based on unique morphology associated with sound production

    Analysis of the putative role of CR1 in Alzheimer’s disease: Genetic association, expression and function

    Get PDF
    Chronic activation of the complement system and induced inflammation are associated with neuropathology in Alzheimer's disease (AD). Recent large genome wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) in the C3b/C4b receptor (CR1 or CD35) that are associated with late onset AD. Here, anti-CR1 antibodies (Abs) directed against different epitopes of the receptor, were used to localize CR1 in brain, and relative binding affinities of the CR1 ligands, C1q and C3b, were assessed by ELISA. Most Abs tested stained red blood cells in blood vessels but showed no staining in brain parenchyma. However, two monoclonal anti-CR1 Abs labeled astrocytes in all of the cases tested, and this reactivity was preabsorbed by purified recombinant human CR1. Human brain-derived astrocyte cultures were also reactive with both mAbs. The amount of astrocyte staining varied among the samples, but no consistent difference was conferred by diagnosis or the GWAS-identified SNPs rs4844609 or rs6656401. Plasma levels of soluble CR1 did not correlate with diagnosis but a slight increase was observed with rs4844609 and rs6656401 SNP. There was also a modest but statistically significant increase in relative binding activity of C1q to CR1 with the rs4844609 SNP compared to CR1 without the SNP, and of C3b to CR1 in the CR1 genotypes containing the rs6656401 SNP (also associated with the larger isoform of CR1) regardless of clinical diagnosis. These results suggest that it is unlikely that astrocyte CR1 expression levels or C1q or C3b binding activity are the cause of the GWAS identified association of CR1 variants with AD. Further careful functional studies are needed to determine if the variant-dictated number of CR1 expressed on red blood cells contributes to the role of this receptor in the progression of AD, or if another mechanism is involved
    corecore