241 research outputs found

    Adaptive Grid Solution Procedure for Elliptic Flows.

    Get PDF
    This thesis deals with the formulation of a computationally efficient adaptive grid system for two-dimensional elliptic flow and heat transfer problems. The formulation is in a curvilinear coordinate system so that flow in irregular geometries can be easily handled. An equal order pressure-velocity scheme is formulated in this thesis to solve the flow equations. An adaptive grid solution procedure is developed in which the grid is automatically refined in regions of high errors and consecutive calculations are performed between the coarse grid and adapted grid regions in the same spirit as that of a Multi-Grid method. In orthogonal coordinate systems, checkerboard pressure and velocity fields are avoided by using staggered grids. In curvilinear coordinates however, the geometric complications associated with staggered grids are overwhelming and therefore a non-staggered grid arrangement is desirable. To this end, an equal order pressure-velocity interpolation scheme is developed in this thesis. This scheme is termed as the SIMPLEM algorithm and is shown to have good convergence characteristics, and to suppress checkerboard pressure and velocity fields. The adaptive grid technique developed flags the important regions in the calculation domain from an initial coarse grid calculation. Then, adaptation is performed by generating a nonuniform mesh in the flagged region using Poisson\u27s equations in which the nonhomogeneous terms are chosen so that a denser clustering of grid points is obtained where needed most in the flagged region. Coarse grid calculations in the whole domain, and fine grid calculations in the flagged region are consecutively performed until convergence, with correction terms from the fine grid solution added to the coarse grid equations in the flagged region in every cycle of calculation. Thus, the solution in the non-refined regions improves due to the influence of the correction terms added to the coarse grid equations. The effectiveness of the method is demonstrated by solving a variety of test problems and comparing the results with those obtained on a uniform or fixed grid. The adaptive grid solutions are shown to be more accurate than the fixed uniform grid solutions for the same level of computational effort

    The aincient city of Lebanon Byblos

    Get PDF
    древние города, Библос, история, восток, Лива

    Veterinary education in Lebanon

    Get PDF
    Lebanon, veterinary education, Ливан, ветеринарное образование, зарубежный опы

    A sub-regional outlook of renewable energy potential: the case of Jordan, Syria and Lebanon

    No full text
    This paper addresses the current status and the potentials of renewable energy applications in the selected Middle East countries; Jordan, Syria, and Lebanon. The energy and environmental situations within these primary target areas reflect many similarities and share serious common problems. These include an almost total dependence on imported oil products as the primary energy source, rapidly growing populations that are escalating the demand for energy, and only rudimentary efforts currently underway to mitigate the greenhouse and other adverse environmental effects of energy utilization. Lebanon is highly urbanized compared to Syria and Jordan with much smaller area and has not been fully engaged in pilot projects for use of renewable energy. Applications of solar energy in that region have been growing since 1970. Solar water heating with support of policies in Jordan has achieved measurable market penetration. Lebanon and Syria have not made reasonable progress in solar applications due to subsidized electricity supply to the end user. The technical and economic feasibility of wind energy utilization in Lebanon has not been yet fully explored, while it has advanced with two operating wind farms in Jordan, and one pilot wind farm in Syria. Similarly, the transfer of biomass technology has been successful in Jordan while it remains at the assessment level in Lebanon and Syria coupled with small pilot projects

    Novel strategies to prevent and overcome relapse after allogeneic hematopoietic cell transplantation in acute lymphoblastic leukemia

    Get PDF
    The outcome of B-cell acute lymphoblastic leukemia (B-ALL) has improved over time with the incorporation of multi-agent chemotherapy in the treatment landscape as well as the recent approval of immunotherapeutic agents allowing a larger proportion of patients to undergo allogeneic hematopoietic cell transplantation (allo-HCT) which is still considered a potential curative approach. However, relapse post-transplant is still occurring and constitutes a common cause of treatment failure in B-ALL. The present review aims to discuss the novel strategies and therapies used to prevent and overcome relapse post allo-HCT in patients with ALL, focusing on the role of tyrosine kinase inhibitors in Philadelphia chromosome positive B-ALL, the role of innovative agents such as blinatumomab and inotuzumab ozogamicin, and finally the role of cellular therapy

    Numerical simulation of a collapsing bubble subject to gravity

    Get PDF
    © 2016 AIP Publishing LLC. The present paper focuses on the simulation of the expansion and aspherical collapse of a laser-generated bubble subjected to an acceleration field and comparison of the results with instances from high-speed videos. The interaction of the liquid and gas is handled with the volume of fluid method. Compressibility effects have been included for each phase to predict the propagation of pressure waves. Initial conditions were estimated through the Rayleigh Plesset equation, based on the maximum bubble size and collapse time. The simulation predictions indicate that during the expansion the bubble shape is very close to spherical. On the other hand, during the collapse the bubble point closest to the bottom of the container develops a slightly higher collapse velocity than the rest of the bubble surface. Over time, this causes momentum focusing and leads to a positive feedback mechanism that amplifies the collapse locally. At the latest collapse stages, a jet is formed at the axis of symmetry, with opposite direction to the acceleration vector, reaching velocities of even 300 m/s. The simulation results agree with the observed bubble evolution and pattern from the experiments, obtained using high speed imaging, showing the collapse mechanism in great detail and clarity

    Comparative Evaluation of Sentiment Analysis Methods Across Arabic Dialects

    Get PDF
    Sentiment analysis in Arabic is challenging due to the complex morphology of the language. The task becomes more challenging when considering Twitter data that contain significant amounts of noise such as the use of Arabizi, code-switching and different dialects that varies significantly across the Arab world, the use of non-Textual objects to express sentiments, and the frequent occurrence of misspellings and grammatical mistakes. Modeling sentiment in Twitter should become easier when we understand the characteristics of Twitter data and how its usage varies from one Arab region to another. We describe our effort to create the first Multi-Dialect Arabic Sentiment Twitter Dataset (MD-ArSenTD) that is composed of tweets collected from 12 Arab countries, annotated for sentiment and dialect. We use this dataset to analyze tweets collected from Egypt and the United Arab Emirates (UAE), with the aim of discovering distinctive features that may facilitate sentiment analysis. We also perform a comparative evaluation of different sentiment models on Egyptian and UAE tweets. These models are based on feature engineering and deep learning, and have already achieved state-of-The-Art accuracies in English sentiment analysis. Results indicate the superior performance of deep learning models, the importance of morphological features in Arabic NLP, and that handling dialectal Arabic leads to different outcomes depending on the country from which the tweets are collected.This work was made possible by NPRP 6-716-1-138 grant from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu

    Simulation of bubble expansion and collapse in the vicinity of a free surface

    Get PDF
    The present paper focuses on the numerical simulation of the interaction of laser-generated bubbles with a free surface, including comparison of the results with instances from high-speed videos of the experiment. The Volume Of Fluid method was employed for tracking liquid and gas phases while compressibility effects were introduced with appropriate equations of state for each phase. Initial conditions of the bubble pressure were estimated through the traditional Rayleigh Plesset equation. The simulated bubble expands in a non-spherically symmetric way due to the interference of the free surface, obtaining an oval shape at the maximum size. During collapse, a jet with mushroom cap is formed at the axis of symmetry with the same direction as the gravity vector, which splits the initial bubble to an agglomeration of toroidal structures. Overall, the simulation results are in agreement with the experimental images, both quantitatively and qualitatively, while pressure waves are predicted both during the expansion and the collapse of the bubble. Minor discrepancies in the jet velocity and collapse rate are found and are attributed to the thermodynamic closure of the gas inside the bubble

    POD-Galerkin reduced order methods for CFD using Finite Volume Discretisation: vortex shedding around a circular cylinder

    Get PDF
    Vortex shedding around circular cylinders is a well known and studied phenomenon that appears in many engineering fields. A Reduced Order Model (ROM) of the incom- pressible flow around a circular cylinder is presented in this work. The ROM is built performing a Galerkin projection of the governing equations onto a lower dimensional space. The reduced basis space is generated using a Proper Orthogonal Decomposition (POD) approach. In particular the focus is into (i) the correct reproduction of the pres- sure field, that in case of the vortex shedding phenomenon, is of primary importance for the calculation of the drag and lift coefficients; (ii) the projection of the Governing equations (momentum equation and Poisson equation for pressure) performed onto dif- ferent reduced basis space for velocity and pressure, respectively; (iii) all the relevant modifications necessary to adapt standard finite element POD-Galerkin methods to a finite volume framework. The accuracy of the reduced order model is assessed against full order results
    corecore