276 research outputs found

    Martian rampart craters: Morphologic clues for the physical state of the target at time of impact

    Get PDF
    Current research attempts to describe morphologic features seen in very high resolution Viking Orbiter images of crater ejecta blankets and interiors, in order to constrain the most likely target properties at the time of crater formation. The Viking Orbiter image data set contains approximately 400 frames at a spatial resolution of better than 10 meters per pixel, and 2,200 frames at a resolution of better than 20 meters per pixel, for which the atmosphere was either clear or only slightly obscured. A search is being conducted of all these images and so far has revealed several examples of both interior and exterior features of impact craters that bear on the nature of the ejecta fluidizing medium. Preliminary observations and speculations on the physical state of the Martian regolith at the time of crater formation are given and briefly discussed

    Proceedings of the MEVTV Workshop on The Evolution of Magma Bodies on Mars

    Get PDF
    The workshop focused on many of the diverse approaches related to the evolution of magma bodies on Mars that have been pursued during the course of the Mars Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Approximately 35 scientists from the Mars volcanology, petrology, geochemistry, and modeling communities attended. Segments of the meeting concentrated of laboratory analyses and investigations of SNC meteorites, the interpretation of Viking Orbiter and Lander datasets, and the interpretation of computer codes that model volcanic and tectonic processes on Mars. Abstracts of these reports are presented

    Possible origin of some channels on Alba Patera, Mars

    Get PDF
    Several alternative models were proposed for the origin and mode of formation of channels and valley networks on Martian volcanoes, notably Hecates Tholus, Ceraunius Tholus, and Alba Patera. Early interpretations of Mariner 9 and Viking images suggested that these features on Alba were lava channels, while those on Ceraunius Tholus were interpreted as fluvial or volcanic debris channels. Subsequent mapping of Tyrrehna Patera and Hecate Tholus has suggested that pyroclastic activity may have characterized eruptions on these volcanoes, and that at least for Hecates the channels were probably formed by fluvial erosion of unconsolidated ash deposits on the flanks of the volcano. As part of a continuing program to better understand the eruptive history of the young volcanic centers on Mars, numerous channels were identified on the flanks of Alba Patera that resemble the channels on Hecates. As a result, the possibility is being explored that some of the small channels on the flanks of Alba Patera may be fluvial in origin and potentail water sources and modes of formation are being explored

    New very high resolution radar studies of the Moon

    Get PDF
    As part of an effort to further understand the geologic utility of radar studies of the terrestrial planets, investigators at the Hawaii Institute of Geophysics are collaborating with NEROC Haystack Observatory, MIT and the Jet Propulsion Laboratory in the analysis of existing 3.8 and 70 cm radar images of the Moon, and in the acquisition of new data for selected lunar targets. The intent is to obtain multi-polarization radar images at resolutions approaching 75 meters (3.8 cm wavelength) and 400 meters (70 cm wavelength) for the Apollo landing sites (thereby exploiting available ground truth) or regions covered by the metric camera and geochemical experiments onboard the command modules of Apollos 15, 16 and 17. These data were collected in both like- and cross-polarizations, and, in the case of the 70 cm data, permit the phase records to be used to assess the scattering properties of the surface. The distribution of surface units on the Moon that show a mismatch between the surface implied by like- and cross-polarized scattering data is being analyzed, based on the scattering models of Evans and Hagfors

    Constraints on the depth and geometry of the magma chamber of the Olympus Mons Volcano, Mars

    Get PDF
    The summit caldera of the Olympus Mons volcano exhibits one of the clearest examples of tectonic processes associated with shield volcanism on Mars. The radial distance from the center of the transition from concentric ridges to concentric graben within the oldest crater provides a constraint on the geometry and depth of the subsurface magmatic reservoir at the time of subsidence. Here, researchers use this constraint to investigate the size, shape, and depth of the reservoir. Their approach consists of calculating radial surface stresses corresponding to the range of subsurface pressure distributions representing an evacuating magma chamber. They then compare stress patterns to the observed radial positions of concentric ridges and graben. The problem is solved by employing the finite element approach using the program TECTON

    The influence of oceans on Martian volcanism

    Get PDF
    Geomorphological evidence for episodic oceans on Mars has recently been identified. This idea of large bodies of water on Mars is innovative and controversial compared to the more generally accepted view of a 'dry Mars', but also enables some of the more enigmatic volcanic landforms to be reinterpreted in a self-consistent model. This hypothesis can be used to develop new models for the mode of formation of several volcanic landforms in the W. Tharsis and S.E. Elysium Planitia regions of Mars

    Depth/diameter relationships of fresh craters within Hesperia Planum, Mars

    Get PDF
    Meteorite impact craters represent important geological features for revealing the near-surface layers of a planetary surface. In the case of Mars, this characteristic was proposed as a useful method to study spatial variations of such attributes as the distribution of sub-surface volatiles, and heat flow. Using the Planetary Image Cartography System (PICS) software, a quantitative analysis was completed of the geometry of fresh impact craters in the Hesperia Planum region of Mars, where an uniform target material and optimum viewing geometry make possible an analysis of target effects over a large geographic region. Because of the morphologic similarity to the lunar maria, it is likely that Hesperia Planum comprises a series of flood lavas that partially infilled topographic depressions within the Martian highlands. Measurements of partially buried crater rims suggest that the lava flows within Hesperia Planum are between 200-400 m thick

    Evolution of the Olympus Mons Caldera, Mars

    Get PDF
    Extensive high-resolution (15 to 20 m/pixel) coverage of Olympus Mons volcano permits the investigation of the sequence of events associated with the evolution of the nested summit caldera. The sequence of the intra-caldera events is well illustrated by image data collected on orbits 473S and 474S of Viking Orbiter 1. These data cover both the oldest and youngest portions of the caldera floor. The chronology inferred from the observations is presented which in turn can be interpreted in terms of the internal structure of the volcano (i.e., magma chamber depth and the existence of dikes)

    Effects of Volcanoes on the Natural Environment

    Get PDF
    The primary focus of this project has been on the development of techniques to study the thermal and gas output of volcanoes, and to explore our options for the collection of vegetation and soil data to enable us to assess the impact of this volcanic activity on the environment. We originally selected several volcanoes that have persistent gas emissions and/or magma production. The investigation took an integrated look at the environmental effects of a volcano. Through their persistent activity, basaltic volcanoes such as Kilauea (Hawaii) and Masaya (Nicaragua) contribute significant amounts of sulfur dioxide and other gases to the lower atmosphere. Although primarily local rather than regional in its impact, the continuous nature of these eruptions means that they can have a major impact on the troposphere for years to decades. Since mid-1986, Kilauea has emitted about 2,000 tonnes of sulfur dioxide per day, while between 1995 and 2000 Masaya has emotted about 1,000 to 1,500 tonnes per day (Duffel1 et al., 2001; Delmelle et al., 2002; Sutton and Elias, 2002). These emissions have a significant effect on the local environment. The volcanic smog ("vog" ) that is produced affects the health of local residents, impacts the local ecology via acid rain deposition and the generation of acidic soils, and is a concern to local air traffic due to reduced visibility. Much of the work that was conducted under this NASA project was focused on the development of field validation techniques of volcano degassing and thermal output that could then be correlated with satellite observations. In this way, we strove to develop methods by which not only our study volcanoes, but also volcanoes in general worldwide (Wright and Flynn, 2004; Wright et al., 2004). Thus volcanoes could be routinely monitored for their effects on the environment. The selected volcanoes were: Kilauea (Hawaii; 19.425 N, 155.292 W); Masaya (Nicaragua; 11.984 N, 86.161 W); and Pods (Costa Rica; 10.2OoN, 84.233 W)

    The Diversity of Martian Volcanic features as Seen in the MOC, THEMIS, and MOM Data Sets

    Get PDF
    This one-year project (which included one-year no-cost tension) focused on the evolution of the summit areas of Martian volcanoes. It extended the studies conducted under an earlier MDAP project (Grant NAG5-9576, Principal Investigator P. Mouginis- Mark). By using data collected from the Mars Orbiter Camera (MOC), Thermal Emission Imaging System (THEMIS), and the Mars Orbiter Laser Altimeter (MOLA) instruments, we tried to better understand the diversity of constructional volcanism on Mars, and hence further understand the eruption processes. By inspecting THEMIS and MOC data, we explored the following four questions: (1) Where might near-surface volatiles have been released at the summits of the Tharsis volcanoes? Is the trapping and subsequent remobilization of degassed volatiles [Scott and Wilson, 19991 adequate to produce eruptions responsible for extensive deposits such as the ones identified on Arsia Mons [Mouginis-Mark, 2002]? To answer this question, we investigated the diversity of eruption styles by studying the summit areas of Arsia, Pavonis and Ascraeus Montes. (2) What are the geomorphic characteristics of the valley system on Hecates Tholus, a volcano that we have previously proposed experienced explosive activity [Mouginis-Murk et al., 1982]? Our inspection of THEMIS data suggests that water release on the volcano took place over an extended period of time, suggesting that hydrothermal activity may have taken place here. (3) How similar are the collapse processes observed at Martian and terrestrial calderas? New THEMIS data provide a more complete view of the entire Olympus Mons caldera, thereby enabling the comparison with the collapse features at Masaya volcano, Nicaragua, to be investigated. (4) What can we learn about the emplacement of long lava flows in the lava plains of Eastern Tharsis? The result of this work provided a greater understanding of the temporal and spatial variations in the eruptive history of volcanoes on Mars, and the influence of the volatiles within the top few kilometers of the volcanic edifice. This relationship in turn pertains to the availability of volatiles (both juvenile magmatic volatiles and ground water contained within the near-surface rocks) and to magma supply rates at appreciable distances (tens to hundreds of kilometers) from the centers of volcanoes. Explosive volcanism on Mars, a major factor in the release of water at the surface, may have been driven not only by volatiles within the parental melt, but also by magma encountering water or ice at shallow depth within the volcano [Mouginis-Mark et al., 1982, 1988; Crown and Greeley, 1993; Robinson et al., 19931
    corecore