research

The Diversity of Martian Volcanic features as Seen in the MOC, THEMIS, and MOM Data Sets

Abstract

This one-year project (which included one-year no-cost tension) focused on the evolution of the summit areas of Martian volcanoes. It extended the studies conducted under an earlier MDAP project (Grant NAG5-9576, Principal Investigator P. Mouginis- Mark). By using data collected from the Mars Orbiter Camera (MOC), Thermal Emission Imaging System (THEMIS), and the Mars Orbiter Laser Altimeter (MOLA) instruments, we tried to better understand the diversity of constructional volcanism on Mars, and hence further understand the eruption processes. By inspecting THEMIS and MOC data, we explored the following four questions: (1) Where might near-surface volatiles have been released at the summits of the Tharsis volcanoes? Is the trapping and subsequent remobilization of degassed volatiles [Scott and Wilson, 19991 adequate to produce eruptions responsible for extensive deposits such as the ones identified on Arsia Mons [Mouginis-Mark, 2002]? To answer this question, we investigated the diversity of eruption styles by studying the summit areas of Arsia, Pavonis and Ascraeus Montes. (2) What are the geomorphic characteristics of the valley system on Hecates Tholus, a volcano that we have previously proposed experienced explosive activity [Mouginis-Murk et al., 1982]? Our inspection of THEMIS data suggests that water release on the volcano took place over an extended period of time, suggesting that hydrothermal activity may have taken place here. (3) How similar are the collapse processes observed at Martian and terrestrial calderas? New THEMIS data provide a more complete view of the entire Olympus Mons caldera, thereby enabling the comparison with the collapse features at Masaya volcano, Nicaragua, to be investigated. (4) What can we learn about the emplacement of long lava flows in the lava plains of Eastern Tharsis? The result of this work provided a greater understanding of the temporal and spatial variations in the eruptive history of volcanoes on Mars, and the influence of the volatiles within the top few kilometers of the volcanic edifice. This relationship in turn pertains to the availability of volatiles (both juvenile magmatic volatiles and ground water contained within the near-surface rocks) and to magma supply rates at appreciable distances (tens to hundreds of kilometers) from the centers of volcanoes. Explosive volcanism on Mars, a major factor in the release of water at the surface, may have been driven not only by volatiles within the parental melt, but also by magma encountering water or ice at shallow depth within the volcano [Mouginis-Mark et al., 1982, 1988; Crown and Greeley, 1993; Robinson et al., 19931

    Similar works