107 research outputs found

    Understanding the Mechanism of Magnetic Relaxation in Pentanuclear {MnIVMnIII2LnIII2} Single-Molecule Magnets

    Get PDF
    A new family of heterometallic pentanuclear complexes of formulas [MnIVMnIII2LnIII2O2(benz)4(mdea)3(NO3)2(MeOH)] (Ln = Dy (1-Dy), Tb (2-Tb), Gd (3-Gd), Eu (4-Eu), Sm (5-Sm), Nd (6-Nd), Pr (7-Pr); benz(H) = benzoic acid; mdeaH2= N-methyldiethanolamine) and [MnIVMnIII2LnIII2O2(o-tol)4(mdea)3(NO3)2(MeOH)] (Ln = Gd (8-Gd), Eu (9-Eu); o-tol(H) = o-toluic acid) have been isolated and structurally, magnetically, and theoretically characterized. dc magnetic susceptibility measurements reveal dominant antiferromagnetic magnetic interactions for each complex, except for 2-Tb and 3-Gd, which reveal an upturn in the χMT product at low temperatures. The magnetic interactions between the spin centers in the Gd derivatives, 3-Gd and 8-Gd, which display markedly different χMT vs T profiles, were found to be due to the interactions of the GdIII-GdIII ions which change from ferromagnetic (3-Gd) to antiferromagnetic (8-Gd) due to structural differences. ac magnetic susceptibility measurements reveal a nonzero out-of-phase component for 1-Dy and 7-Pr, but no maxima were observed above 2 K (Hdc = 0 Oe), which suggests single-molecule magnet (SMM) behavior. Out-of-phase signals were observed for complexes 2-Tb, 4-Eu, 8-Gd, and 9-Eu, in the presence of a static dc field (Hdc = 2000, 3000 Oe). The anisotropic nature of the lanthanide ions in the benzoate series (1-Dy, 2-Tb, 5-Sm, 6-Nd, and 7-Pr) were thoroughly investigated using ab initio methods. CASSCF calculations predict that the origin of SMM behavior in 1-Dy and 7-Pr and the applied field SMM behavior in 2-Tb does not solely originate from the single-ion anisotropy of the lanthanide ions. To fully understand the relaxation mechanism, we have employed the Lines model to fit the susceptibility data using the POLY_ANISO program, which suggests that the zero-field SMM behavior observed in complexes 1-Dy and 7-Pr is due to weak MnIII/IV-LnIII and LnIII-LnIII couplings and an unfavorable LnIII/MnIII/MnIV anisotropy. In complexes 4-Eu, 8-Gd, and 9-Eu ab initio calculations indicate that the anisotropy of the MnIII ions solely gives rise to the possibility of SMM behavior. Complex 7-Pr is a Pr(III)-containing complex that displays zero-field SMM behavior, which is rare, and our study suggests the possibility of coupling weak SOC lanthanide metal ions to anisotropic transition-metal ions to derive SMM characteristics; however, enhancing the exchange coupling in {3d-4f} complexes is still a stubborn hurdle in harnessing new generation {3d-4f} SMMs

    Mononuclear dysprosium(III) complexes with triphenylphosphine oxide ligands: controlling the coordination environment and magnetic anisotropy

    Get PDF
    We report the synthesis, structural and magnetic characterization of five mononuclear DyIII ion complexes using triphenylphosphine oxide as a monodentate ligand. They have formulae [DyIII(OPPh3)3(NO3)3] (1), [DyIII(OPPh3)4(NO3)2](NO3) (2), [DyIII(OPPh3)3Cl3] (3), [DyIII(OPPh3)4Cl2]Cl (4) and [DyIII(OPPh3)4Cl2](FeCl4) (5). These complexes are characterized using single crystal X-ray diffraction, which revealed that each complex has a unique coordination environment around the DyIII ion, which results in varying dynamic magnetic behavior. Ab initio calculations are performed to rationalize the observed magnetic behavior and to understand the effect that the ligand and coordination geometry around the DyIII ion has on the single-molecule magnet (SMM) behavior. In recent years, seven coordinate DyIII complexes possessing pseudo ~D5h symmetry are found to yield attractive blocking temperatures for the development of new SMM complexes. However, here we show that the strength of the donor ligand plays a critical role in determining the effective energy barrier and is not simply dependent on the geometry and the symmetry around the DyIII ion. Seven coordinate molecules possessing pseudo D5h symmetry with strong equatorial ligation and weak axial ligation are found to be inferior, exhibiting no SMM characteristics under zero-field conditions. Thus, this comprehensive study offers insight on improving the blocking temperature of mononuclear SMMs

    Oblate versus Prolate Electron Density of Lanthanide Ions: A Design Criterion for Engineering Toroidal Moments? A Case Study on {Ln <sup>III</sup><inf>6</inf> } (Ln=Tb, Dy, Ho and Er) Wheels

    Get PDF
    © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim We report four new complexes based on a {Ln III6 } wheel structure, three of which possess a net toroidal magnetic moment. The four examples consist of {Tb III6 } and {Ho III6 } wheels, which are rare examples of non Dy III based complexes possessing a toroidal magnetic ground state, and a {Dy III6 } complex which improves its toroidal structure upon lowering the crystallographic symmetry from trigonal (R (Formula presented.)) to triclinic (P (Formula presented.)). Notably the toroidal moment is lost for the trigonal {Er III6 } analogue. This suggests the possibility of utilizing the popular concept of oblate and prolate electron density of the ground state M J levels of lanthanide ions to engineer toroidal moments

    What Controls the Magnetic Exchange and Anisotropy in a Family of Tetranuclear {Mn2IIMn2III} Single-Molecule Magnets?

    Get PDF
    © 2017 American Chemical Society.Twelve heterovalent, tetranuclear manganese(II/III) planar diamond or “butterfly” complexes, 1-12, have been synthesized and structurally characterized, and their magnetic properties have been probed using experimental and theoretical techniques. The 12 structures are divided into two distinct “classes”. Compounds 1-8 place the Mn(III), S = 2, ions in the body positions of the butterfly metallic core, while the Mn(II), S = 5/2, ions occupy the outer wing sites and are described as “Class 1”. Compounds 9-12 display the reverse arrangement of ions and are described as “Class 2”. Direct current susceptibility measurements for 1-12 reveal ground spin states ranging from S = 1 to S = 9, with each complex displaying unique magnetic exchange parameters (J). Alternating current susceptibility measurements found that that slow magnetic relaxation is observed for all complexes, except for 10 and 12, and display differing anisotropy barriers to magnetization reversal. First, we determined the magnitude of the magnetic exchange parameters for all complexes. Three exchange coupling constants (Jbb, Jwb, and Jww) were determined by DFT methods which are found to be in good agreement with the experimental fits. It was found that the orientation of the Jahn-Teller axes and the Mn-Mn distances play a pivotal role in determining the sign and strength of the Jbb parameter. Extensive magneto-structural correlations have been developed for the two classes of {MnII2MnIII2} butterfly complexes by varying the Mnb-O distance, Mnw-O distance, Mnb-O-Mnb angle (α), Mnb-O-Mnb-O dihedral angle (γ), and out-of-plane shift of the Mnw atoms (β). For the magnetic anisotropy the DFT calculations yielded larger negative D value for complexes 2, 3, 4, and 6 compared to the other complexes. This is found to be correlated to the electron-donating/withdrawing substituents attached to the ligand moiety and suggests a possible way to fine tune the magnetic anisotropy in polynuclear Mn ion complexes

    Slow Magnetic Relaxation and Single-Molecule Toroidal Behaviour in a Family of Heptanuclear {CrIIILnIII6} (Ln=Tb, Ho, Er) Complexes

    Get PDF
    © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. The synthesis, magnetic properties, and theoretical studies of three heterometallic {Cr III Ln III 6 } (Ln=Tb, Ho, Er) complexes, each containing a metal topology consisting of two Ln 3 triangles connected via a Cr III linker, are reported. The {CrTb 6 } and {CrEr 6 } analogues display slow relaxation of magnetization in a 3000 Oe static magnetic field. Single-crystal measurements reveal opening up of the hysteresis loop for {CrTb 6 } and {CrHo 6 } molecules at low temperatures. Ab initio calculations predict toroidal magnetic moments in the two Ln 3 triangles, which are found to couple, stabilizing a con-rotating ferrotoroidal ground state in Tb and Ho examples and extend the possibility of observing toroidal behaviour in non Dy III complexes for the first time

    Crystal structure of di-μ2-benzoato-di-[tris(pyrazolyl) methane-aquamanganese(II)] benzoate, C24H22N 6MnO5

    No full text
    Zeitschrift fur Kristallographie - New Crystal Structures2183357-35

    Crystal structure of μ2-oxo-bis-μ2-formato- bis(tris(pyrazoryl)methane)diiron(III) perchlorate, C22H 22Cl2Fe2N12O13

    No full text
    Zeitschrift fur Kristallographie - New Crystal Structures2183349-35
    corecore