276 research outputs found

    Thoracic Vascular Trauma

    Get PDF

    Mayfuq revisité, le couvent de l'épée et du fourreau

    Get PDF

    3.3 kV SiC JBS diode configurable rectifier module

    Get PDF
    This paper presents the use of innovative high-voltage SiC diode technology in the development of a user configurable full-wave or half-wave rectifier bridge. The devices are of merged Junction-Barrier-Schottky (JBS) type to enable for optimum performance even in the presence of current surges, as demanded by the application. To contain the cost of the proposed solution, their packaging relies on Insulated Metal Substrates (IMS), as opposed to conventional ceramic type substrates. The layout and module pin terminations are chosen to yield optimum electro-thermal and electro-magnetic performance in compatibility with a standard solder and wire-bond assembly process. Preliminary functional static characterization tests at different temper¬atures are also presented

    Acute gallbladder torsion - a continued pre-operative diagnostic dilemma

    Get PDF
    Acute gallbladder volvulus continues to remain a relatively uncommon process, manifesting itself usually during exploration for an acute surgical abdomen with a presumptive diagnosis of acute cholecystitis. The pathophysiology is that of mechanical organo-axial torsion along the gallbladder's longitudinal axis involving the cystic duct and cystic artery, and with a pre-requisite of local mesenteric redundancy. The demographic tendency is septua- and octo-genarians of the female sex, and its overall incidence is increasing, this being attributed to increasing life expectancy. We discuss two cases of elderly, fragile women presenting to the emergency department complaining of sudden onset right upper quadrant abdominal pain. Their subsequent evaluation suggested acute cholecystitis. Ultimately both were taken to the operating room where the correct diagnosis of gallbladder torsion was made. Pre-operative diagnosis continues to be a major challenge with only 4 cases reported in the literature diagnosed with pre-operative imaging; the remainder were found intra-operatively. Consequently, a delay in diagnosis can have devastating patient outcomes. Herein we propose a necessary high index of suspicion for gallbladder volvulus in the outlined patient demographic with symptoms and signs mimicking acute cholecystitis

    Dust Embedded Sources at the Galactic Center. 2 to 4μ\mum imaging and spectroscopy in the central parsec

    Full text link
    We present the first L-band spectroscopic observations for a dozen stellar sources in the central 0.5 pc of the GC stellar cluster that are bright in the 2-4 micron wavelength domain. With the aid of additional K-band spectroscopic data, we derive optical depth spectra of the sources after fitting their continuum emission with a single reddened blackbody continuum. We also derive intrinsic source spectra by correcting the line of sight extinction via the optical depth spectrum of a late type star that is most likely not affected by local dust emission or extinction at the Galactic Center. The good agreement between the two approaches shows that the overall variation of the line-of-sight extinction across the central 0.5 pc is ΔAK0.5\Delta A_{\mathrm{K}}\leq0.5 mag. The extinction corrected spectra of the hot He-stars are in good agreement with pure Rayleigh Jeans continuum spectra. The intrinsic spectra of all other sources are in agreement with continuum emission and absorption features due to the dust in which they are embedded. We interprete both facts as evidence that a significant amount of the absorption takes place within the central parsec of the Galactic Center and is most likely associated with the individual sources there. We find absorption features at 3.0 micron, 3.4 micron, and 3.48 micron wavelength. Correlations between all three features show that they are very likely to arise in the ISM of the central 0.5 pc. Spectroscopy of high MIR-excess sources 0.5'' north of the IRS 13 complex is largely consistent with them being YSOs. However, a bow-shock nature of these sources cannot be excluded.Comment: 19 pages. 19 figures. 6 tables. Accepted in A&

    Reconfiguration on sparse graphs

    Full text link
    A vertex-subset graph problem Q defines which subsets of the vertices of an input graph are feasible solutions. A reconfiguration variant of a vertex-subset problem asks, given two feasible solutions S and T of size k, whether it is possible to transform S into T by a sequence of vertex additions and deletions such that each intermediate set is also a feasible solution of size bounded by k. We study reconfiguration variants of two classical vertex-subset problems, namely Independent Set and Dominating Set. We denote the former by ISR and the latter by DSR. Both ISR and DSR are PSPACE-complete on graphs of bounded bandwidth and W[1]-hard parameterized by k on general graphs. We show that ISR is fixed-parameter tractable parameterized by k when the input graph is of bounded degeneracy or nowhere-dense. As a corollary, we answer positively an open question concerning the parameterized complexity of the problem on graphs of bounded treewidth. Moreover, our techniques generalize recent results showing that ISR is fixed-parameter tractable on planar graphs and graphs of bounded degree. For DSR, we show the problem fixed-parameter tractable parameterized by k when the input graph does not contain large bicliques, a class of graphs which includes graphs of bounded degeneracy and nowhere-dense graphs

    Reconfiguring Independent Sets in Claw-Free Graphs

    Get PDF
    We present a polynomial-time algorithm that, given two independent sets in a claw-free graph GG, decides whether one can be transformed into the other by a sequence of elementary steps. Each elementary step is to remove a vertex vv from the current independent set SS and to add a new vertex ww (not in SS) such that the result is again an independent set. We also consider the more restricted model where vv and ww have to be adjacent

    Role of the Subunits Interactions in the Conformational Transitions in Adult Human Hemoglobin: an Explicit Solvent Molecular Dynamics Study

    Full text link
    Hemoglobin exhibits allosteric structural changes upon ligand binding due to the dynamic interactions between the ligand binding sites, the amino acids residues and some other solutes present under physiological conditions. In the present study, the dynamical and quaternary structural changes occurring in two unligated (deoxy-) T structures, and two fully ligated (oxy-) R, R2 structures of adult human hemoglobin were investigated with molecular dynamics. It is shown that, in the sub-microsecond time scale, there is no marked difference in the global dynamics of the amino acids residues in both the oxy- and the deoxy- forms of the individual structures. In addition, the R, R2 are relatively stable and do not present quaternary conformational changes within the time scale of our simulations while the T structure is dynamically more flexible and exhibited the T\rightarrow R quaternary conformational transition, which is propagated by the relative rotation of the residues at the {\alpha}1{\beta}2 and {\alpha}2{\beta}1 interface.Comment: Reprinted (adapted) with permission from J. Phys. Chem. B DOI:10.1021/jp3022908. Copyright (2012) American Chemical Societ

    Independent Set Reconfiguration in Cographs

    Get PDF
    We study the following independent set reconfiguration problem, called TAR-Reachability: given two independent sets II and JJ of a graph GG, both of size at least kk, is it possible to transform II into JJ by adding and removing vertices one-by-one, while maintaining an independent set of size at least kk throughout? This problem is known to be PSPACE-hard in general. For the case that GG is a cograph (i.e. P4P_4-free graph) on nn vertices, we show that it can be solved in time O(n2)O(n^2), and that the length of a shortest reconfiguration sequence from II to JJ is bounded by 4n2k4n-2k, if such a sequence exists. More generally, we show that if XX is a graph class for which (i) TAR-Reachability can be solved efficiently, (ii) maximum independent sets can be computed efficiently, and which satisfies a certain additional property, then the problem can be solved efficiently for any graph that can be obtained from a collection of graphs in XX using disjoint union and complete join operations. Chordal graphs are given as an example of such a class XX

    Three‐dimensional damage morphologies of thermomechanically deformed sintered nanosilver die attachments for power electronics modules

    Get PDF
    © 2019 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society. A time-lapse study of thermomechanical fatigue damage has been undertaken using three-dimensional X-ray computer tomography. Morphologies were extracted from tomography data and integrated with data from microscopy modalities at different resolution levels. This enables contextualization of some of the fine-scale properties which underpin the large-scale damage observed via tomography. Lateral views of crack development are presented, which show networks analogous to mud-cracks. Crack fronts which develop in the most porous regions within the sintered attachment layer travel across the boundary into the copper substrate. The propagation characteristics of these cracks within the substrate are analysed. Evidence is provided of heterogeneous densification within the sintered joint under power cycling, and this is shown to play a major role in driving the initiation and propagation of the cracks. Examination of the texture (differing levels of X-ray absorption) of virtual cross-sectional images reveals the origins of the nonuniformity of densification. Finally, cracks within the sintered joint are shown to have a negligible impact on the conduction pathway of the joint due to their aspect ratio and orientation with respect to the assembly. Lay Description: This paper concerns the use of three-dimensional (3D) X-ray tomography, a nondestructive technique, to perform cradle-to-grave studies of sintered nanosilver die-attachments under operation. Sintered nanosilver die-attachments have been proposed as a more reliable and environmentally friendly alternative to solder alloy joints for emerging power electronics module designs. However, their degradation mechanisms are not as well understood. This same sample-study is about observing how the fine-scale structure of a sintered attachment evolves and degrades over time. Using 3D tomography affords otherwise infeasible perspectives, such as virtual cross-sections in the lateral plane of the attachment. These perspectives provide qualitative information which elucidates the degradation mechanisms. They demonstrate, for example, that the structure of the sintered attachment densifies under operation, and a consequence of this is the formation of shrinkage cracks in the most porous regions, much like mud-cracks. Other imaging techniques (metallographic etching and scanning electron microscopy) have been used in correlation with 3D renderings of these cracks to analyse their propagation and reveal their relationship both with the internal structure of the sintered attachment itself, and the structure of the substrate to which it is joined. It is shown that the cracks develop within the sintered attachment layer and eventually cross over into the substrate. A comparison of two sintered attachments with contrasting bulk porosities allows the effect of initial bond quality on crack development to be examined
    corecore