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Abstract. We study the following independent set reconfiguration prob-
lem: given two independent sets I and J of a graph G, both of size at
least k, is it possible to transform I into J by adding and removing ver-
tices one-by-one, while maintaining an independent set of size at least k
throughout? This problem is known to be PSPACE-hard in general. For
the case that G is a cograph on n vertices, we show that it can be solved
in polynomial time. More generally, we show that for a graph class G that
includes all chordal and claw-free graphs, the problem can be solved in
polynomial time for graphs that can be obtained from a collection of
graphs from G using disjoint union and complete join operations.

1 Introduction

Reconfiguration problems have been studied often in recent years. These arise
in settings where the goal is to transform feasible solutions to a problem in a
step-by-step manner, while maintaining a feasible solution throughout. A recon-
figuration problem is obtained by defining feasible solutions (or configurations)
for instances of the problem, and a (symmetric) adjacency relation between solu-
tions. This defines a solution graph for every instance, which is usually exponen-
tially large in the input size. Usually, it is assumed that adjacency and being
a feasible solution can be tested in polynomial time. Typical questions that
are studied are deciding the existence of a path between two given solutions
(reachability), finding shortest paths between solutions, deciding whether the
solution graph is connected or giving sufficient conditions for this, and giving
bounds on its diameter. For example, the literature contains such results on the
reconfiguration of vertex colorings [1,3,7,9–11], boolean assignments that satisfy
a given formula [16], independent sets [17,20,22,24], matchings [20], shortest
paths [4,5,21], subsets of a (multi-)set of integers [14,19], etc. Techniques for
many different reconfiguration problems are discussed in [20,24]. See the recent
survey by Van den Heuvel [18] for an overview of and introduction to reconfig-
uration problems, and a discussion of their various applications.

One of the most well-studied problems of this kind is the reconfiguration of
independent sets (which are sets of pairwise nonadjacent vertices). For a graph G
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and integer k, the independent sets of size at least/exactly k of G form the fea-
sible solutions. Independent sets are also called token configurations, where the
independent set vertices are viewed as tokens. Three types of adjacency relations
have been studied in the literature: in the token jumping (TJ) model [20,22], a
token can be moved from any vertex to any other vertex. In the token sliding
(TS) model, tokens can be moved along edges of the graph [17,22]. In the token
addition and removal (TAR) model [20,22], tokens can be removed and added
in arbitrary order, though at least k tokens should remain at any time (k is the
token lower bound). Of course, in all of these cases, an independent set should
be maintained.

The reachability problem has received the most attention in this context:
given two independent sets I and J of a graph G, and possibly a token lower
bound k ≤ min{|I|, |J |}, is there a path (or reconfiguration sequence) from I to
J in the solution graph? We call this problem TJ-Reachability, TS-Reachability
or TAR-Reachability, depending on the adjacency relation that is used. Kamiński
et al. [22] showed that the TAR-Reachability problem generalizes the TJ-
Reachability problem. For all three adjacency relations, this problem is PSPACE-
hard, even in perfect graphs [22], and even in planar graphs of maximum degree
3 [17] (see also [7]). In [20] an alternative, simple PSPACE-hardness proof is
given. In addition, in [22], the problem of deciding whether there exists a path
of length at most l between two solutions is shown to be strongly NP-hard, for
all three adjacency models.

On the positive side, these problems can be solved in polynomial time for
various restricted graph classes. The result on matching reconfiguration by Ito
et al. [20] implies that for line graphs, TJ-Reachability and TAR-Reachability can
be solved efficiently. This result has recently been generalized to claw-free graphs,
also for TS-Reachability [8]. Kamiński et al. [22] give an efficient algorithm for
TS-Reachability in cographs, and show that for TJ-Reachability in even-hole-
free graphs, a reconfiguration sequence of length |I\J | exists between every pair
of independent sets I and J . TAR-Reachability has also been studied under
the name Vertex Cover Reconfiguration in [24], where parameterized complexity
results for the problem are given. (Recall that I is an independent set of G if
and only if V (G)\I is a vertex cover of G.)

New results and techniques. In this paper, we show that TAR-Reachability
can be solved in polynomial time for cographs. Using [22], it follows that the
same holds for TJ-Reachability. This answers an open question from [22]. Recall
that a graph is a cograph iff it has no induced path on four vertices. Alternatively,
cographs can be defined as graphs that can be obtained from a collection of triv-
ial (one vertex) graphs by repeatedly applying (disjoint) union and (complete)
join operations. The order of these operations can be described using a rooted
cotree. This characterization allows efficient dynamic programming (DP) algo-
rithms for various NP-hard problems. Our algorithm is also a DP algorithm over
the cotree, albeit more complex than many known DP algorithms on cographs.
For both solutions I and J , certain values are computed, using first a bottom up
DP phase, and next a top down DP phase over the cotree. Using these values, we
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can conclude whether J is reachable from I. Because of this method, we in fact
obtain a stronger result: TJ- and TAR-Reachability can be decided efficiently for
any graph that can be obtained using join and union operations, when starting
with a collection of base graphs from a graph class G that satisfies the following
properties: (i) For any graph in G, the TAR-Reachability problem can be decided
efficiently, and (ii) for any graph in G and independent set I, the size of a maxi-
mum independent set that is TAR-reachable from I can be computed efficiently,
for all token lower bounds k ≤ |I|. Results from [8,15,22,23,25] can easily be
combined to show that chordal graphs and claw-free graphs satisfy these prop-
erties. In all, this yields quite a rich graph class for which this PSPACE-hard
problem can be solved efficiently. Considering the fact that TAR-Reachability
is PSPACE-hard for perfect graphs [22], the boundary between hard and easy
graph classes for this problem starts to become clear.

This paper presents one of the first nontrivial examples of how dynamic
programming over graph decompositions can be used to solve reconfiguration
problems. (We remark that a DP approach has also been used to show that the
PSPACE-hard Shortest Path Reconfiguration problem can be solved in polyno-
mial time on planar graphs [4], using a problem-specific layer decomposition of
the graph.) This is especially interesting since cographs form the base class for
various graph width measures: cographs are exactly the graphs of cliquewidth
at most two, and exactly the graphs of modular-width two [13]. We expect that
our method forms a first step towards efficiently solving various reconfigura-
tion problems for graphs of bounded modular-width, and provides useful con-
cepts for addressing other graph classes/decompositions. However, for graphs of
bound cliquewidth, similar efficient algorithms should not be expected, since it
was shown very recently that many reconfiguration problems, including TAR-
Reachability and TJ-Reachability, remain PSPACE-hard for graphs of band-
width/treewidth/cliquewidth at most k, for some constant k [27].

Our DP algorithm for the TAR-Reachability problem is presented in
Sects. 3–5. First, in Sect. 3, an example is given, the proof of this statement is
outlined, and a detailed overview of Sects. 4 and 5 is given. In Sect. 6, examples
of graph classes are given to which this algorithm applies. We start in Sect. 2
with precise definitions, and end in Sect. 7 with a discussion. Statements for
which additional proof details can be found in the full version of this paper [6]
are marked with a star.

2 Preliminaries

By α(G) we denote the maximum size of an independent set in G. In this paper,
we use the token addition and removal (TAR) model for independent set recon-
figuration. For a graph G and integer k, the vertex set of the graph TARk(G) is
the set of all independent sets of size at least k in G. Two distinct independent
sets I and J are adjacent in TARk(G) if there exists a vertex v ∈ V (G) such
that I ∪ {v} = J or I = J ∪ {v}. Vertices from independent sets will also be
called tokens, and we will also say that J is obtained from I by adding one token
on v resp. removing one token from v.
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For an integer k and two independent sets I and J of G with |I| ≥ k and
|J | ≥ k, we write I ↔G

k J if TARk(G) contains a walk from I to J . Such a walk
in TARk(G) (a sequence of independent sets) is also called a k-TAR-sequence for
G from I to J . To avoid discussing trivial cases in our proofs, we allow that a k-
TAR-sequence contains consecutive sets that are identical. Observe that I ↔G

0 J
always holds, and that the relation ↔G

k is an equivalence relation, for all G and k.
The superscript G is omitted if the graph in question is clear. If G and k are
clear from the context, we will also simply say that J is reachable from I.

A generalized cotree is a binary tree T with root r, together with

– a partition of the nonleaf vertices into union nodes and join nodes, and
– a graph Gu for every leaf u of T , such that for any two leaves u and v, the

graphs Gu and Gv are vertex and edge disjoint.

Vertices of T are called nodes. With every node u ∈ V (T ) we associate a graph
Gu in the following way: for leaves u, Gu is as given. Otherwise, u has two child
nodes; denote these by v and w. If u is a union node, then Gu is the disjoint union
of Gv and Gw. If u is a join node, then Gu is obtained by taking the complete
join of Gv and Gw. This operation is defined as follows: start with the disjoint
union of Gv and Gw, and add edges yz for every combination of y ∈ V (Gv) and
z ∈ V (Gw). For a node u ∈ V (T ), we denote Vu = V (Gu). A generalized cotree
T is called a cotree if for every leaf v ∈ V (T ), the graph Gv consists of a single
vertex. Such a leaf is called a trivial leaf. (See Fig. 1(d) for an example.)

Let T be a (generalized) cotree, with root r. For a graph G, we say that T
is a (generalized) cotree for G if Gr = G. A graph G is called a cograph if there
exists a cotree for G. Let G be a graph class. We say that a generalized cotree
T for a graph G is a cotree decomposition of G into G-graphs if for every leaf
v ∈ V (T ), the graph Gv ∈ G.

3 Example and Proof Outline

In Fig. 1, three independent sets A, B and C are shown for a cograph G. In order
to go from A to B in TAR5(G), an independent set must be visited which has no
tokens on the component Gx, and therefore at least five tokens on the other two
components. The only such independent set of G is C. Using similar observations,
it can be verified that the shortest 5-TAR-sequence from A (or B) to C is unique
up to symmetries, and has length twelve (six additions and deletions). Hence
the shortest 5-TAR-sequence from A to B has length 24. In general, deciding
whether A ↔G

k B requires computing the following values λI
k(v), which indicate

the minimum number of vertices of Vv that must be contained in any independent
set reachable from I.

Definition 1. Let T be a generalized cotree for a graph G, I be an independent
set of G, and k ≤ |I|. For v ∈ V (T ), define λI

k(v) = min |J ∩ Vv| over all
independent sets J of G with I ↔G

k J .
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Fig. 1. (a), (b), (c): A cograph G, with independent sets A, B and C indicated by the
white vertices. Any 5-TAR-sequence from A to B must visit C and use all vertices of
G. (d): A cotree of G with root r, with join nodes v, w and x corresponding to the
components of G.

For instance, in the example from Fig. 1, λA
5 (x) = 0 = λB

5 (x), and this fact
is essential for concluding that A ↔G

5 B in this case. The following theorem
characterizes whether B is reachable from A, using the values from Definition 1.

Theorem 2. Let T be a generalized cotree for a graph G. Let A and B be two
independent sets of G of size at least k. Then A ↔G

k B if and only if

1. for all nodes u ∈ V (T ), λA
k (u) = λB

k (u), and
2. for all leaves u ∈ V (T ), (A ∩ Vu) ↔Gu

� (B ∩ Vu), where � = λA
k (u).

The forward direction of the proof is straightforward: if A ↔G
k B, then since

↔G
k is an equivalence relation, any independent set J is reachable from A if and

only if it is reachable from B. It follows that λA
k (v) = λB

k (v) for all v ∈ V (T ). The
second property follows by restricting all independent sets in a k-TAR-sequence
from A to B to the subgraph Gu for any leaf u ∈ V (T ). By definition, these all
have size at least � = λA

k (u), so this yields an �-TAR-sequence from A ∩ Vu to
B ∩ Vu for Gu. In Sect. 5, the backward direction of the proof is given.

In order to efficiently decide whether A ↔G
k B, it remains to compute the

values λI
k(v) for all v ∈ V (T ) and I = A,B. In the example from Fig. 1, it holds

that λA
5 (x) = 0. This is because on the subgraph Gu, which is the disjoint union

of components Gv and Gw (see Fig. 1(d)), it is possible to reconfigure from the
initial independent set A to an independent set with at least five tokens on Gu,
while keeping at least two tokens on Gu throughout. This indicates that in order
to compute the values λI

k(v), the following values must be computed.

Definition 3. Let T be a generalized cotree for G, and let I be an independent
set of G. For v ∈ V (T ) and � ∈ {0, . . . , |I ∩ Vv|}, denote by μI

� (v) the maximum
of |J | over all independent sets J of Gv with (I ∩ Vv) ↔Gv

� J .

Note that μI
0(v) = α(Gv) (regardless of the choice of I). The value μI

� (v) depends
only on the situation in the subgraph Gv; not on the entire graph. This is in
contrast to the values λI

k(v). So the values μI
� (u) for a node u with children v and
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w can be computed using only the values μI
�′(v) and μI

�′(w) for different choices
of �′, so using a bottom up dynamic programming algorithm. This can then be
used to compute values λI

k(u), which requires considering the entire graph, so
this uses a top down dynamic programming algorithm. The DP rules are given in
Sect. 4. Together with Theorem 2, this yields our main algorithmic result, given
in the next theorem, which is also proved in Sect. 5.

Theorem 4. Let T be a generalized cotree for a graph G on n vertices, let k ∈ N

and let A and B be independent sets of G. If for every nontrivial leaf v ∈ V (T )
and relevant integer �, (1) the values μA

� (v) and μB
� (v) are known, and (2) it is

known whether (A∩Vv) ↔Gv

� (B ∩Vv), then in polynomial time it can be decided
whether A ↔G

k B.

In particular, Theorem4 implies that for any two independent sets A and B for
a cograph G, it can be decided in polynomial time whether A ↔G

k B.
For all of our proofs, an essential (easy to see) fact is that for every node u,

the vertex set Vu is a module of G. A module of a graph G is a set M ⊆ V (G) such
that for every v ∈ V (G)\M , either M ⊆ N(v) or M ∩ N(v) = ∅. Note that we
will also consider V (G) to be a (trivial) module of G. Modules are very useful for
independent set reconfiguration, since to some extent, we can reconfigure within
the module and outside of the module independently; only the number of tokens
on the module matters. The following two lemmas make this more precise, and
present two useful properties for the proofs below.

Lemma 5. (*) Let M be a module of a graph G, let k and � be integers, and
let A be an independent set of G, with |A ∩ M | ≥ max{1, �} and |A| ≥ k.
Denote H = G[M ]. If there exists an independent set B of G with A ↔G

k B and
|B ∩M | ≤ �, and if there exists an independent set C of H with (A∩M) ↔H

� C,
then there exists an independent set D of G with A ↔G

k D and D ∩ M = C.

Lemma 6. (*) Let M be a module of a graph G, such that M can be parti-
tioned into two sets M1 and M2 with no edges between M1 and M2. Let A be
an independent set of G, let B1 be an independent set of G with A ↔G

k B1, that
maximizes |B1 ∩ M1| among all such sets, and let B2 be an independent set of
G with A ↔G

k B2. Then there exists an independent set C of G with A ↔G
k C

and C ∩ Mi = Bi ∩ Mi for i ∈ {1, 2}.

4 Dynamic Programming Rules

Throughout this section, T denotes a generalized cotree of G and I denotes an
independent set of G. We first show how to compute the values μI

� (u) for every
type of node u. For trivial leaf nodes, this is easy.

Proposition 7. Let u ∈ V (T ) be a trivial leaf node. Then μI
� (u) = 1 for all �.

For join nodes u, the computation of μI
� (u) is still relatively straightforward.

Note that for any independent set I, u has a child w with Vw ∩ I = ∅.
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Proposition 8. Let u ∈ V (T ) be a join node. Let w be a child of u with I∩Vv =
∅, and let v be the other child of u. Then μI

� (u) = μI
� (v) for all � ≥ 1, and

μI
0(u) = max{μI

0(v), μI
0(w)}.

Proof: Because all edges are present between Gv and Gw, a maximum inde-
pendent set of Gu is either a maximum independent set of Gv or of Gw, so
μI
0(u) = α(Gu) = max{α(Gv), α(Gw)} = max{μI

0(v), μI
0(w)}. Now consider the

case � ≥ 1, and thus |I ∩ Vu| ≥ 1. Then initially all tokens of I are on the child
Gv. As long as there is at least one token on Gv, no tokens can be added to Gw.
So essentially, Gw can be ignored, and thus μI

� (u) = μI
� (v). 
�

For union nodes u with children v and w, computing the values μI
� (u) is more

complicated, and requires studying �-TAR-sequences for Gu of the following type.
Let x0 = I ∩Vv. Observe that from the initial independent set I ∩Vu we can reach
an independent set with μI

x0
(v) tokens on Vv, and y0 := max{0, �−μI

x0
(v)} tokens

on Vw, while keeping at least � tokens on Vu throughout. Call this an independent
set of type (μI

x0
(v), y0). From this, we can subsequently reach an independent set

of type (x1, μ
I
y0

(w)), with x1 := max{0, � − μI
y0

(w)}. Next, an independent set of
type (μI

x1
(v), y1) with y1 := max{0, � − μI

x1
(v)} can be reached, etc. This process

continues with finding ever lower x- and y-values, until a ‘stable tuple’ (x, y) is
obtained. This motivates the following definition.

Definition 9. For a union node u ∈ V (T ) with left child v and right child w,
and integer � ≤ |I ∩ Vu|, call a tuple (x, y) of integers with x ≤ |I ∩ Vv| and
y ≤ |I ∩ Vw| �-stable if x = max{0, � − μI

y(w)} and y = max{0, � − μI
x(v)}. Call

an �-stable tuple (x, y) maximum if there is no �-stable tuple (x′, y′) with x′ ≥ x,
y′ ≥ y and (x, y) �= (x′, y′).

It can be shown that there is a unique maximum �-stable tuple, which can be
characterized as follows. Using this characterization, Lemma 11 shows how the
values μI

� (u) can be computed for a join node u.

Lemma 10. (*) Let u ∈ V (T ) be a union node, with left child v and right
child w. For � ∈ {0, . . . , |I ∩ Vu|}, let x = min |J ∩ Vv| and y = min |J ∩ Vw|,
where in both cases the minimum is taken over all independent sets J of Gu with
(I ∩ Vu) ↔Gu

� J . Then (x, y) is the unique maximum �-stable tuple for I and u.

Lemma 11. (*) Let u ∈ V (T ) be a union node, with left child v and right child
w. For � ∈ {0, . . . , |I ∩ Vu|}, let (x, y) be the unique maximum �-stable tuple for
I and u. Then μI

� (u) = μI
x(v) + μI

y(w).

We will now show how the values λI
k(v) can be computed for all nodes v ∈

V (T ). For the case that v is a union node, this requires knowledge of the unique
maximum �-stable tuple. For the root node of T , the value is trivial.

Proposition 12. Let r be the root node of T . Then λI
k(r) = k.

Proposition 13. Let u ∈ V (T ) be a join node, with children v and w such that
I ∩ Vw = ∅. Then λI

k(v) = λI
k(u) and λI

k(w) = 0.
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Proof: Considering I, λI
k(w) = 0 follows immediately. If λI

k(u) = 0, then obvi-
ously λI

k(v) = 0. Adding a token to Gw requires first reaching an independent
set with no tokens on Gv, and thus requires λI

k(u) = 0. So if λI
k(u) ≥ 1, then Gw

can essentially be ignored, and therefore λI
k(v) = λI

k(u) in that case. 
�
Lemma 14. Let u ∈ V (T ) be a union node, with left child v and right child w.
Let � = λI

k(u), and let (x, y) be the maximum �-stable tuple for I and u. Then
λI

k(v) = x and λI
k(w) = y.

Proof: Denote Iu = I∩Vu. We first show that λI
k(v) ≥ x and λI

k(w) ≥ y. Consider
a k-TAR-sequence I0, . . . , Ip for G with I0 = I and |Ip ∩ Vv| = λI

k(v). For every
i, denote I ′

i = Ii ∩ Vu, and consider the sequence I ′
0, . . . , I

′
p. By definition of

� = λI
k(u), for every i it holds that |I ′

i| ≥ �, so Iu ↔Gu

� I ′
p. Using Lemma 10 it

then follows that λI
k(v) = |Ip ∩ Vv| ≥ x. Analogously, λI

k(w) ≥ y follows.
We will now prove that λI

k(v) ≤ x and λI
k(w) ≤ y. The case � = 0 is obvious,

so assume � ≥ 1. By Lemma 10, there exist independent sets J1 and J2 of Gu

with Iu ↔Gu

� J1, Iu ↔Gu

� J2, |J1∩Vv| = x and |J2∩Vw| = y. By the definition of
� = λI

k(u), there exists an independent set B of G with I ↔G
k B and |B∩Vu| = �.

We can now apply Lemma 5 twice, with Vu and I in the role of M and A, and
J1 or J2 respectively in the role of C, to conclude that there exist independent
sets D1 and D2 of G with I ↔G

k D1, I ↔G
k D2, D1 ∩ Vu = J1 and D2 ∩ Vu = J2.

So |D1 ∩ Vv| = x and |D2 ∩ Vw| = y, and thus λI
k(v) ≤ x and λI

k(w) ≤ y. 
�

5 Algorithm Summary and Main Theorems

We can now prove our two main theorems; first we prove our characterization
of A ↔G

k B in terms of the values λI
k(u), and secondly we summarize how these

values can be computed efficiently.

Proof of Theorem 2: The forward direction of the proof was given in Sect. 3.
We now prove the backward direction. Assume that the two properties given in
the theorem statement hold. So we may denote λk(u) = λA

k (u) = λB
k (u) for all

nodes u. We prove the following claim by induction over T :

Claim A: For all nodes u ∈ V (T ): (A ∩ Vu) ↔Gu

λk(u)
(B ∩ Vu).

For leaf nodes u ∈ V (T ) (induction base), the statement follows immediately
from the second property. To prove the induction step, first consider a join
node u ∈ V (T ) with children v and w. Suppose that λk(v) ≥ 1. This implies
A ∩ Vv �= ∅ and B ∩ Vv �= ∅. Therefore, since u is a join node, A ∩ Vu = A ∩ Vv

and B ∩ Vu = B ∩ Vv. In addition, λk(u) = λk(v) (Proposition 13). From these
facts, and the induction assumption (A ∩ Vv) ↔Gv

λk(v)
(B ∩ Vv), we conclude that

(A ∩ Vu) ↔Gu

λk(u)
(B ∩ Vu). The case λk(w) ≥ 1 is analog. On the other hand, if

λk(v) = λk(w) = 0, then λk(u) = 0 (Proposition 13). Claim A follows for u since
(A ∩ Vu) ↔Gu

0 (B ∩ Vu) trivially holds.
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Next, consider the case that u ∈ V (T ) is a union node with left child v and
right child w. Denote � = λk(u), x = λk(v) and y = λk(w). By Lemma 14, (x, y)
is the maximum �-stable tuple for u, for both A and B. We define Cv to be an
independent set of Gv with (A ∩ Vv) ↔Gv

x Cv, with maximum size among all
such sets, and define Cw to be an independent set of Gw with (A∩Vw) ↔Gw

y Cw,
with maximum size among all such sets. By induction, (A ∩ Vv) ↔Gv

x (B ∩ Vv)
holds, so it also holds that (B ∩ Vv) ↔Gv

x Cv, and that Cv has maximum size
among all such reachable sets. Analogously, (B ∩ Vw) ↔Gw

y Cw holds, and Cw

has maximum size among all such reachable sets. Define Cu = Cv ∪ Cw. We
will now show that Cu is reachable from both A ∩ Vu and B ∩ Vu, which proves
Claim A for node u.

Lemma 10 shows that there exists an independent set J of Gu with (A ∩
Vu) ↔Gu

� J and |J ∩ Vv| = x. Using this, we argue that there exists an inde-
pendent set J1 of Gu with (A ∩ Vu) ↔Gu

� J1 and J1 ∩ Vv = Cv. If A ∩ Vv = ∅,
then this claim is trivial. Otherwise, we can apply (module) Lemma5 to draw
this conclusion (using Vv, Gu, J and Cv in the roles of the module M , entire
graph G, and independent sets B and C, respectively). Analogously, we may
conclude that there exists an independent set J2 of Gu with (A ∩ Vu) ↔Gu

� J2

and J2 ∩ Vw = Cw. Since Cu = Cv ∪ Cw, we can now apply (module) Lemma 6
(with Gu in the role of the entire graph, Vv and Vw in the roles of disjoint mod-
ules M1 and M2, and J1 and J2 in the roles of B1 and B2), to conclude that
A ∩ Vu ↔Gu

� Cu. For this, we require the fact that Cv has maximum size among
all independent sets of Gv that are reachable from A ∩ Vv.

The argument from the previous paragraph also holds when replacing A by
B, since Cv and Cw are also maximum reachable independent sets from B ∩ Vv

and B ∩ Vw. So B ∩ Vu ↔Gu

� Cu also holds. Hence A ∩ Vu ↔Gu

� Cu ↔Gu

� B ∩ Vu,
which proves Claim A for u.

This concludes the induction proof of Claim A. Applying Claim A to the root
node r of T shows that A ↔G

k B, since λk(r) = k (Proposition 12), and G = Gr,
and therefore concludes the proof of the theorem. 
�
Proof of Theorem 4: First we use a bottom up dynamic programming algo-
rithm, to compute the values μA

� (u) and μB
� (u) for every node u and relevant

integer �, and to compute the maximum �-stable tuples for every union node and
relevant integer �. This can be done in polynomial time using the rules given in
Proposition 7, Proposition 8 and Lemma 11. Note that maximum �-stable tuples
can easily be computed in polynomial time by testing a quadratic number of
possible tuples (Definition 9).

Next, we start the top down phase of the dynamic programming algorithm,
where we compute the values λA

k (u) and λB
k (u) for every node u. This can be

done in polynomial time using the rules given in Propositions 12 and 13, and
Lemma 14. Note that applying Lemma14 to a union node u requires the pre-
viously computed maximum �-stable tuple (x, y) for I = A,B, with � = λI

k(u).
This is why the bottom up phase is required. At this point, the characterization
given in Theorem 2 can be used to conclude whether A ↔G

k B. 
�
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6 Examples of Suitable Graph Classes

Consider T , G, A, B and k as in Theorem 4. If v ∈ V (T ) is a trivial leaf, then
for every relevant value �, μA

� = 1 and μB
� = 1 hold (Proposition 7), and clearly

(A∩Vv) ↔Gv

� (B∩Vv) holds. So combined with the fact that a cotree of a cograph
G can be found in linear time [12], Theorem 4 implies that the TAR-Reachability
problem can be decided in polynomial time for a cograph G.

Theorem 4 is however much stronger, and implies that TAR-Reachability
can be decided efficiently for much richer graph classes. Recall that a (simple)
graph G is chordal/even-hole-free/claw-free if it does not contain as an induced
subgraph a cycle of length at least four/a cycle of even length/a K1,3, respectively.
By applying independent set reconfiguration results from [22] for even-hole-free
graphs, and from [8] for claw-free graphs, one can easily prove the following two
theorems. Similar to Definition 3, for an independent set A of a graph G with
|A| ≥ k, we denote μA

k (G) = max{|J | : A ↔G
k J}.

Theorem 15. (*) Let A and B be independent sets of an even-hole-free or
claw-free graph G. Then in polynomial time, it can be decided whether A ↔G

k B.

Theorem 16. (*) Let A be an independent set of a graph G that is even-hole-
free or claw-free. Then μA

k (G) = |A| if A is a dominating set of size k, and
μA

k (G) = α(G) otherwise.

It follows that for an even-hole-free or claw-free graph G, μA
k (G) can be computed

efficiently if α(G) can be computed efficiently. Unfortunately, for even-hole-free
graphs G it is an open question whether this can be done (see [22,26]). Nev-
ertheless, for the subclass of chordal graphs, an efficient algorithm to compute
α(G) is known [15]. For claw-free graphs, α(G) can be computed efficiently as
well [23,25]. Denote by G∗ class of all graphs that are chordal or claw-free. We
conclude that if for G, a cotree decomposition into G∗-graphs is given, then the
conditions of Theorem4 are satisfied, and thus the TAR-Reachability problem
can be solved efficiently for G. It only remains to find such a cotree decomposi-
tion efficiently. Recall that for a graph G, by G the complement of G is denoted,
which is the graph G = (V (G), {uv | uv �∈ E(G)}).

Definition 17. A maximal cotree decomposition is a generalized cotree decom-
position T where for every leaf u ∈ V (T ), both Gu and Gu are connected.

Proposition 18. (*) For any graph G, a maximal cotree decomposition of G
can be computed in polynomial time.

A graph class G is called hereditary if for every G ∈ G and every induced subgraph
H of G, H ∈ G holds. Clearly, the aforementioned class G∗ is hereditary.

Lemma 19. (*) Let G be a hereditary graph class, and let G be a graph that
admits a cotree decomposition into G-graphs. Then every maximal cotree decom-
position of G is a cotree decomposition into G-graphs.
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From Proposition 18 and Lemma 19 it follows that a cotree decomposition into
G∗-graphs can be computed in polynomial time. Together, these statements yield
the main result of this section.

Theorem 20. (*) Let G be a graph that admits a cotree decomposition into
graphs that are chordal or claw-free, and let A and B be independent sets of G,
both of size at least k. Then in polynomial time, we can decide whether A ↔G

k B.

7 Discussion

In the full version of this paper [6], we show that our DP algorithm for cographs
G can be implemented to run in time O(n2), where n = |V (G)|. The key to
this is a more efficient computation of stable tuples, not based on Definition 9.
Secondly, in [6] we show that components of TARk(G) have diameter at most
4n − 2k, if G is a cograph.

The following question related to independent set reconfiguration in cographs
is still open: what is the complexity of deciding whether there exists a k-TAR-
sequence of length at most � between two independent sets of a cograph? (Recall
that for general graphs, this is strongly NP-hard [22].) In [6], we also asked if
it can be decided efficiently whether TARk(G) is connected, using similar tech-
niques. In subsequent research [2], this question has been answered affirmatively.
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