1,030 research outputs found

    One-loop effective action around de Sitter space

    Get PDF
    The non-local one-loop contribution to the gravitational effective action around de Sitter space is computed using the background field method with pure trace external gravitational fields and it is shown to vanish. The calculation is performed in a generic covariant gauge and the result is verified to be gauge invariant.Comment: 19 pages, uses phyzzx.tex inpu

    The Refractory-to-Ice Mass Ratio in Comets

    Get PDF
    We review the complex relationship between the dust-to-gas mass ratio usually estimated in the material lost by comets, and the Refractory-to-Ice mass ratio inside the nucleus, which constrains the origin of comets. Such a relationship is dominated by the mass transfer from the perihelion erosion to fallout over most of the nucleus surface. This makes the Refractory-to-Ice mass ratio inside the nucleus up to ten times larger than the dust-to-gas mass ratio in the lost material, because the lost material is missing most of the refractories which were inside the pristine nucleus before the erosion. We review the Refractory-to-Ice mass ratios available for the comet nuclei visited by space missions, and for the Kuiper Belt Objects with well defined bulk density, finding the 1-σ lower limit of 3. Therefore, comets and KBOs may have less water than CI-chondrites, as predicted by models of comet formation by the gravitational collapse of cm-sized pebbles driven by streaming instabilities in the protoplanetary disc

    Optical observations of NEA 162173 (1999 JU3) during the 2011-2012 apparition

    Full text link
    Near-Earth asteroid 162173 (1999 JU3) is a potential target of two asteroid sample return missions, not only because of its accessibility but also because of the first C-type asteroid for exploration missions. The lightcurve-related physical properties of this object were investigated during the 2011-2012 apparition. We aim to confirm the physical parameters useful for JAXA's Hayabusa 2 mission, such as rotational period, absolute magnitude, and phase function. Our data complement previous studies that did not cover low phase angles. With optical imagers and 1-2 m class telescopes, we acquired the photometric data at different phase angles. We independently derived the rotational lightcurve and the phase curve of the asteroid. We have analyzed the lightcurve of 162173 (1999 JU3), and derived a synodic rotational period of 7.625 +/- 0.003 h, the axis ratio a/b = 1.12. The absolute magnitude H_R = 18.69 +/- 0.07 mag and the phase slope of G = -0.09 +/- 0.03 were also obtained based on the observations made during the 2011-2012 apparition.Comment: 4 pages, 3 figure

    Cosmological Dark Energy: Prospects for a Dynamical Theory

    Get PDF
    We present an approach to the problem of vacuum energy in cosmology, based on dynamical screening of Lambda on the horizon scale. We review first the physical basis of vacuum energy as a phenomenon connected with macroscopic boundary conditions, and the origin of the idea of its screening by particle creation and vacuum polarization effects. We discuss next the relevance of the quantum trace anomaly to this issue. The trace anomaly implies additional terms in the low energy effective theory of gravity, which amounts to a non-trivial modification of the classical Einstein theory, fully consistent with the Equivalence Principle. We show that the new dynamical degrees of freedom the anomaly contains provide a natural mechanism for relaxing Lambda to zero on cosmological scales. We consider possible signatures of the restoration of conformal invariance predicted by the fluctuations of these new scalar degrees of freedom on the spectrum and statistics of the CMB, in light of the latest bounds from WMAP. Finally we assess the prospects for a new cosmological model in which the dark energy adjusts itself dynamically to the cosmological horizon boundary, and therefore remains naturally of order H^2 at all times without fine tuning.Comment: 50 pages, Invited Contribution to New Journal of Physics Focus Issue on Dark Energ

    Infrared Behavior of the Pressure in gϕ3g \phi^3 Theory Reexamined

    Full text link
    We reinvestigate the infrared behavior of the pressure in the gϕ3g \phi^3 scalar theory in six dimensions. This problem was first studied by Almeida and Frenkel and more recently by Carrington et al., that certified their results under certain approximations. We employ an alternative technique, instead of the approximation methods necessary to truncate the Schwinger-Dyson equations, often considered to calculate the pressure nonperturbatively. A daisy-type sum, implemented through the modified self-consistent resummation (MSCR), is enough to take care of the infrared divergences ensuring the finiteness of the pressure.Comment: Revtex4, 7 pages, 1 figur

    Stress Tensor from the Trace Anomaly in Reissner-Nordstrom Spacetimes

    Full text link
    The effective action associated with the trace anomaly provides a general algorithm for approximating the expectation value of the stress tensor of conformal matter fields in arbitrary curved spacetimes. In static, spherically symmetric spacetimes, the algorithm involves solving a fourth order linear differential equation in the radial coordinate r for the two scalar auxiliary fields appearing in the anomaly action, and its corresponding stress tensor. By appropriate choice of the homogeneous solutions of the auxiliary field equations, we show that it is possible to obtain finite stress tensors on all Reissner-Nordstrom event horizons, including the extreme Q=M case. We compare these finite results to previous analytic approximation methods, which yield invariably an infinite stress-energy on charged black hole horizons, as well as with detailed numerical calculations that indicate the contrary. The approximation scheme based on the auxiliary field effective action reproduces all physically allowed behaviors of the quantum stress tensor, in a variety of quantum states, for fields of any spin, in the vicinity of the entire family (0 le Q le M) of RN horizons.Comment: 43 pages, 12 figure

    Quantum Diffeomorphisms and Conformal Symmetry

    Get PDF
    We analyze the constraints of general coordinate invariance for quantum theories possessing conformal symmetry in four dimensions. The character of these constraints simplifies enormously on the Einstein universe R×S3R \times S^3. The SO(4,2)SO(4,2) global conformal symmetry algebra of this space determines uniquely a finite shift in the Hamiltonian constraint from its classical value. In other words, the global Wheeler-De Witt equation is {\it modified} at the quantum level in a well-defined way in this case. We argue that the higher moments of T00T^{00} should not be imposed on the physical states {\it a priori} either, but only the weaker condition T˙00=0\langle \dot T^{00} \rangle = 0. We present an explicit example of the quantization and diffeomorphism constraints on R×S3R \times S^3 for a free conformal scalar field.Comment: PlainTeX File, 37 page

    2PI effective action for gauge theories: Renormalization

    Get PDF
    We discuss the application of two-particle-irreducible (2PI) functional techniques to gauge theories, focusing on the issue of non-perturbative renormalization. In particular, we show how to renormalize the photon and fermion propagators of QED obtained from a systematic loop expansion of the 2PI effective action. At any finite order, this implies introducing new counterterms as compared to the usual ones in perturbation theory. We show that these new counterterms are consistent with the 2PI Ward identities and are systematically of higher order than the approximation order, which guarantees the convergence of the approximation scheme. Our analysis can be applied to any theory with linearly realized gauge symmetry. This is for instance the case of QCD quantized in the background field gauge.Comment: 21 pages, 8 figures. Uses JHEP3.cl
    corecore