1,274 research outputs found

    Spiral arm triggering of star formation

    Get PDF
    We present numerical simulations of the passage of clumpy gas through a galactic spiral shock, the subsequent formation of giant molecular clouds (GMCs) and the triggering of star formation. The spiral shock forms dense clouds while dissipating kinetic energy, producing regions that are locally gravitationally bound and collapse to form stars. In addition to triggering the star formation process, the clumpy gas passing through the shock naturally generates the observed velocity dispersion size relation of molecular clouds. In this scenario, the internal motions of GMCs need not be turbulent in nature. The coupling of the clouds' internal kinematics to their externally triggered formation removes the need for the clouds to be self-gravitating. Globally unbound molecular clouds provides a simple explanation of the low efficiency of star formation. While dense regions in the shock become bound and collapse to form stars, the majority of the gas disperses as it leaves the spiral arm.Comment: 6 pages, 4 figures: IAU 237, Triggering of star formation in turbulent molecular clouds, eds B. Elmegreen and J. Palou

    A minimum hypothesis explanation for an IMF with a lognormal body and power law tail

    Full text link
    We present a minimum hypothesis model for an IMF that resembles a lognormal distribution at low masses but has a distinct power-law tail. Even if the central limit theorem ensures a lognormal distribution of condensation masses at birth, a power-law tail in the distribution arises due to accretion from the ambient cloud, coupled with a non-uniform (exponential) distribution of accretion times.Comment: 2 pages, 1 figure, to appear in IMF@50, eds. E. Corbelli, F. Palla, and H. Zinnecker, Kluwer, Astrophysics and Space Science Librar

    Large Area Mapping at 850 Microns. V. Analysis of the Clump Distribution in the Orion A South Molecular Cloud

    Get PDF
    We present results from a 2300 arcmin^2 survey of the Orion A molecular cloud at 450 and 850 micron using the Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope. The region mapped lies directly south of the OMC1 cloud core and includes OMC4, OMC5, HH1/2, HH34, and L1641N. We identify 71 independent clumps in the 850 micron map and compute size, flux, and degree of central concentration in each. Comparison with isothermal, pressure-confined, self-gravitating Bonnor-Ebert spheres implies that the clumps have internal temperatures T_d ~ 22 +/- K and surface pressures log (k^-1 P cm^-3 K) = 6.0 +/- 0.2. The clump masses span the range 0.3 - 22 Msun assuming a dust temperature T_d ~ 20 K and a dust emissivity kappa_850 = 0.02 cm^2 g^-1. The distribution of clump masses is well characterized by a power-law N(M) propto M^-alpha with alpha = 2.0 +/- 0.5 for M > 3.0 Msun, indicating a clump mass function steeper than the stellar Initial Mass Function. Significant incompleteness makes determination of the slope at lower masses difficult. A comparison of the submillimeter emission map with an H_2 2.122 micron survey of the same region is performed. Several new Class 0 sources are revealed and a correlation is found between both the column density and degree of concentration of the submillimeter sources and the likelihood of coincident H_2 shock emission.Comment: 44 pages, 17 figures, accepted by Ap

    Sensitive Limits on the Water Abundance in Cold Low Mass Molecular Cores

    Get PDF
    We present SWAS observations of water vapor in two cold star-less clouds, B68 and Core D in rho Ophiuchus. Sensitive non-detections of the 1(10)-1(01) transition of o-H2O are reported for each source. Both molecular cores have been previously examined by detailed observations that have characterized the physical structure. Using these rather well defined physical properties and a Monte-Carlo radiation transfer model we have removed one of the largest uncertainties from the abundance calculation and set the lowest water abundance limit to date in cold low-mass molecular cores. These limits are < 3 x 10^{-8} (relative to H2) and < 8 x 10^{-9} in B68 and rho Oph D, respectively. Such low abundances confirm the general lack of ortho-water vapor in cold (T < 20 K) cores. Provided that the ortho/para ratio of water is not near zero, these limits are well below theoretical predictions and appear to support the suggestion that most of the water in dense low-mass cores is frozen onto the surfaces of cold dust grains.Comment: 12 pages, 3 figures, accepted by Astrophysical Journal Letter

    The Environment and Nature of the Class I Protostar Elias 29: Molecular Gas Observations and the Location of Ices

    Get PDF
    A (sub-)millimeter line and continuum study of the Class I protostar Elias 29 in the ρ Ophiuchi molecular cloud is presented whose goals are to understand the nature of this source and to locate the ices that are abundantly present along this line of sight. Within 15"-60" beams, several different components contribute to the line emission. Two different foreground clouds are detected, an envelope/disk system and a dense ridge of HCO^+-rich material. The latter two components are spatially separated in millimeter interferometer maps. We analyze the envelope/disk system by using inside-out collapse and flared disk models. The disk is in a relatively face-on orientation (<60°), which explains many of the remarkable observational features of Elias 29, such as its flat spectral energy distribution, its brightness in the near-infrared, the extended components found in speckle interferometry observations, and its high-velocity molecular outflow. It cannot account for the ices seen along the line of sight, however. A small fraction of the ices is present in a (remnant) envelope of mass 0.12-0.33 M_☉, but most of the ices (~70%) are present in cool (T < 40 K) quiescent foreground clouds. This explains the observed absence of thermally processed ices (crystallized H_2O) toward Elias 29. Nevertheless, the temperatures could be sufficiently high to account for the low abundance of apolar (CO, N_2, O_2) ices. This work shows that it is crucial to obtain spectrally and spatially resolved information from single-dish and interferometric molecular gas observations in order to determine the nature of protostars and to interpret Infrared Space Observatory and future Space Infrared Telescope Facility observations of ices and silicates along a pencil beam

    Hyaluronan, a Crucial Regulator of Inflammation

    Get PDF
    Hyaluronan (HA), a major component of the extracellular matrix (ECM), plays a key role in regulating inflammation. Inflammation is associated with accumulation and turnover of HA polymers by multiple cell types. Increasingly through the years, HA has become recognized as an active participant in inflammatory, angiogenic, fibrotic, and cancer promoting processes. HA and its binding proteins regulate the expression of inflammatory genes, the recruitment of inflammatory cells, the release of inflammatory cytokines, and can attenuate the course of inflammation, providing protection against tissue damage. A growing body of evidence suggests the cell responses are HA molecular weight dependent. HA fragments generated by multiple mechanisms throughout the course of inflammatory pathologies, elicit cellular responses distinct from intact HA. This review focuses on the role of HA in the promotion and resolution of inflammation

    Spatial and temporal evolution of neuronal activation, stress and injury in lithium-pilocarpine seizures in adult rats.

    Get PDF
    In order to follow the spatial and temporal evolution of neuronal damage, cellular activation and stress responses subsequent to lithium-pilocarpine seizures of various durations in the adult rat, we analyzed the expression of Fos protein and local cerebral glucose utilization as markers of cellular activation, HSP72 immunoreactivity and acid fuchsin staining as indicators of cellular stress and injury, and Cresyl violet staining for the assessment of neuronal damage. The expression of Fos appeared very early, 2-30 min after the onset of polyspikes and intensified during the following 4 h. Fos immunoreactivity was especially high in the hippocampus, cerebral cortex, amygdala and anterior olfactory nuclei. Local cerebral glucose utilization measured during the second hour of seizures was largely increased (350-580%) over control levels in cortical areas, amygdala, dentate gyrus, caudate nucleus and mediodorsal thalamus. HSP72 immunoreactivity never appeared earlier than 40-50 min after the onset of polyspikes, and was most prominent in hippocampal CA3 area, cerebral cortex (except the piriform cortex) and anterior olfactory nuclei. Acid fuchsin staining was maximal in the piriform cortex and the polymorphic layer of the dentate gyrus. Staining was moderate in the sensorimotor cortex and the amygdala. Neuronal damage was extensive in the piriform and entorhinal cortices, the hippocampal CA3 area and the polymorphic layer of the dentate gyrus, basal amygdala, mediodorsal thalamus and anterior olfactory nuclei. In conclusion, the present study shows that brain regions with the highest expression of Fos and the largest metabolic activation were also highly stained with acid fuchsin and most heavily damaged. Conversely, there is no clear relationship between HSP72 expression, cellular activation and neuronal damage

    The Initial Mass Function of Low-Mass Stars and Brown Dwarfs in Taurus

    Full text link
    By combining deep optical imaging and infrared spectroscopy with data from the Two-Micron All-Sky Survey (2MASS) and from previous studies (e.g., Briceno et al.), I have measured the Initial Mass Function (IMF) for a reddening-limited sample in four fields in the Taurus star forming region. This IMF is representative of the young populations within these fields for masses above 0.02 Msun. Relative to the similarly derived IMF for the Trapezium Cluster (Luhman et al.), the IMF for Taurus exhibits a modest deficit of stars above one solar mass (i.e., steeper slope), the same turnover mass (~0.8 Msun), and a significant deficit of brown dwarfs. If the IMF in Taurus were the same as that in the Trapezium, 12.8+/-1.8 brown dwarfs (>0.02 Msun) are expected in these Taurus fields where only one brown dwarf candidate is found. These results are used to test theories of the IMF.Comment: to be published in The Astrophysical Journal, 24 pages, 6 figures, also found at http://cfa-www.harvard.edu/~kluhman/taurus

    The initial conditions of star formation in the Ophiuchus main cloud: Kinematics of the protocluster condensations

    Get PDF
    The earliest phases of clustered star formation and the origin of the stellar initial mass function (IMF) are currently much debated. In order to constrain the origin of the IMF, we investigated the internal and relative motions of starless condensations and protostars previously detected by us in the dust continuum at 1.2mm in the L1688 protocluster of the Ophiuchus molecular cloud complex. The starless condensations have a mass spectrum resembling the IMF and are therefore likely representative of the initial stages of star formation in the protocluster. We carried out detailed molecular line observations, including some N2H+(1-0) mapping, of the Ophiuchus protocluster condensations using the IRAM 30m telescope. We measured subsonic or at most transonic levels of internal turbulence within the condensations, implying virial masses which generally agree within a factor of ~ 2 with the masses derived from the 1.2mm dust continuum. This supports the notion that most of the L1688 starless condensations are gravitationally bound and prestellar in nature. We measured a global one-dimensional velocity dispersion of less than 0.4 km/s between condensations. This small relative velocity dispersion implies that, in general, the condensations do not have time to interact with one another before evolving into pre-main sequence objects. Our observations support the view that the IMF is partly determined by cloud fragmentation at the prestellar stage. Competitive accretion is unlikely to be the dominant mechanism at the protostellar stage in the Ophiuchus protocluster, but it may possibly govern the growth of starless, self-gravitating condensations initially produced by gravoturbulent fragmentation toward an IMF, Salpeter-like mass spectrum.Comment: 17 pages, 8 figures. A&A, in press (v2: notes added to Table 3
    • 

    corecore