6,031 research outputs found

    Metals get an awkward cousin

    Full text link
    A newly predicted state of matter is a simple theoretical example of a phase that conducts electricity but is not smoothly connected to our conventional model of metals. A viewpoint on arXiv:1201.5998.Comment: Physics 5, 82 (2012

    Glassy behavior of electrons near metal-insulator transitions

    Full text link
    The emergence of glassy behavior of electrons is investigated for systems close to the disorder and/or interaction-driven metal-insulator transitions. Our results indicate that Anderson localization effects strongly stabilize such glassy behavior, while Mott localization tends to suppress it. We predict the emergence of an intermediate metallic glassy phase separating the insulator from the normal metal. This effect is expected to be most pronounced for sufficiently disordered systems, in agreement with recent experimental observations.Comment: Final version as published in Physical Review Letter

    Sound Velocity Anomaly at the Mott Transition: application to organic conductors and V2O3

    Full text link
    Close to the Mott transition, lattice degrees of freedom react to the softening of electron degrees of freedom. This results in a change of lattice spacing, a diverging compressibility and a critical anomaly of the sound velocity. These effects are investigated within a simple model, in the framework of dynamical mean-field theory. The results compare favorably to recent experiments on the layered organic \kappa-(BEDT-TTF)_2Cu[N(CN)_2]Cl conductor . We predict that effects of a similar magnitude are expected for V2O3, despite the much larger value of the elastic modulus of this material.Comment: New discussion of the relation between the sound-velocity and the compressibility has been adde

    Mott physics and first-order transition between two metals in the normal state phase diagram of the two-dimensional Hubbard model

    Full text link
    For doped two-dimensional Mott insulators in their normal state, the challenge is to understand the evolution from a conventional metal at high doping to a strongly correlated metal near the Mott insulator at zero doping. To this end, we solve the cellular dynamical mean-field equations for the two-dimensional Hubbard model using a plaquette as the reference quantum impurity model and continuous-time quantum Monte Carlo method as impurity solver. The normal-state phase diagram as a function of interaction strength UU, temperature TT, and filling nn shows that, upon increasing nn towards the Mott insulator, there is a surface of first-order transition between two metals at nonzero doping. That surface ends at a finite temperature critical line originating at the half-filled Mott critical point. Associated with this transition, there is a maximum in scattering rate as well as thermodynamic signatures. These findings suggest a new scenario for the normal-state phase diagram of the high temperature superconductors. The criticality surmised in these systems can originate not from a T=0 quantum critical point, nor from the proximity of a long-range ordered phase, but from a low temperature transition between two types of metals at finite doping. The influence of Mott physics therefore extends well beyond half-filling.Comment: 27 pages, 16 figures, LaTeX, published versio

    Determination of the diffusion constant using phase-sensitive measurements

    Get PDF
    We apply a pulsed-light interferometer to measure both the intensity and the phase of light that is transmitted through a strongly scattering disordered material. From a single set of measurements we obtain the time-resolved intensity, frequency correlations and statistical phase information simultaneously. We compare several independent techniques of measuring the diffusion constant for diffuse propagation of light. By comparing these independent measurements, we obtain experimental proof of the consistency of the diffusion model and corroborate phase statistics theory.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Magnetic-field induced resistivity minimum with in-plane linear magnetoresistance of the Fermi liquid in SrTiO3-x single crystals

    Full text link
    We report novel magnetotransport properties of the low temperature Fermi liquid in SrTiO3-x single crystals. The classical limit dominates the magnetotransport properties for a magnetic field perpendicular to the sample surface and consequently a magnetic-field induced resistivity minimum emerges. While for the field applied in plane and normal to the current, the linear magnetoresistance (MR) starting from small fields (< 0.5 T) appears. The large anisotropy in the transverse MRs reveals the strong surface interlayer scattering due to the large gradient of oxygen vacancy concentration from the surface to the interior of SrTiO3-x single crystals. Moreover, the linear MR in our case was likely due to the inhomogeneity of oxygen vacancies and oxygen vacancy clusters, which could provide experimental evidences for the unusual quantum linear MR proposed by Abrikosov [A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998)].Comment: 5 pages, 4 figure

    Mott transition in one dimension: Benchmarking dynamical cluster approaches

    Full text link
    The variational cluster approach (VCA) is applied to the one-dimensional Hubbard model at zero temperature using clusters (chains) of up to ten sites with full diagonalization and the Lanczos method as cluster solver. Within the framework of the self-energy-functional theory (SFT), different cluster reference systems with and without bath degrees of freedom, in different topologies and with different sets of variational parameters are considered. Static and one-particle dynamical quantities are calculated for half-filling as a function of U as well as for fixed U as a function of the chemical potential to study the interaction- and filling-dependent metal-insulator (Mott) transition. The recently developed Q-matrix technique is used to compute the SFT grand potential. For benchmarking purposes we compare the VCA results with exact results available from the Bethe ansatz, with essentially exact dynamical DMRG data, with (cellular) dynamical mean-field theory and full diagonalization of isolated Hubbard chains. Several issues are discussed including convergence of the results with cluster size, the ability of cluster approaches to access the critical regime of the Mott transition, efficiency in the optimization of correlated-site vs. bath-site parameters and of multi-dimensional parameter optimization. We also study the role of bath sites for the description of excitation properties and as charge reservoirs for the description of filling dependencies. The VCA turns out to be a computationally cheap method which is competitive with established cluster approaches.Comment: 19 pages, 19 figures, v3 with minor corrections, extended discussio

    Analytical calculation of the Green's function and Drude weight for a correlated fermion-boson system

    Full text link
    In classical Drude theory the conductivity is determined by the mass of the propagating particles and the mean free path between two scattering events. For a quantum particle this simple picture of diffusive transport loses relevance if strong correlations dominate the particle motion. We study a situation where the propagation of a fermionic particle is possible only through creation and annihilation of local bosonic excitations. This correlated quantum transport process is outside the Drude picture, since one cannot distinguish between free propagation and intermittent scattering. The characterization of transport is possible using the Drude weight obtained from the f-sum rule, although its interpretation in terms of free mass and mean free path breaks down. For the situation studied we calculate the Green's function and Drude weight using a Green's functions expansion technique, and discuss their physical meaning.Comment: final version, minor correction

    Delocalization in the Anderson model due to a local measurement

    Full text link
    We study a one-dimensional Anderson model in which one site interacts with a detector monitoring the occupation of that site. We demonstrate that such an interaction, no matter how weak, leads to total delocalization of the Anderson model, and we discuss the experimental consequencesComment: 4 pages, additional explanations added, to appear in Phys. Rev. Let

    Out of equilibrium electronic transport properties of a misfit cobaltite thin film

    Full text link
    We report on transport measurements in a thin film of the 2D misfit Cobaltite Ca3Co4O9Ca_{3}Co_{4}O_{9}. Dc magnetoresistance measurements obey the modified variable range hopping law expected for a soft Coulomb gap. When the sample is cooled down, we observe large telegraphic-like fluctuations. At low temperature, these slow fluctuations have non Gaussian statistics, and are stable under a large magnetic field. These results suggest that the low temperature state is a glassy electronic state. Resistance relaxation and memory effects of pure magnetic origin are also observed, but without aging phenomena. This indicates that these magnetic effects are not glassy-like and are not directly coupled to the electronic part.Comment: accepted in Phys Rev B, Brief report
    corecore