85 research outputs found

    Molecular weight effects on chain pull-out fracture of reinforced polymeric interfaces

    Full text link
    Using Brownian dynamics, we simulate the fracture of polymer interfaces reinforced by diblock connector chains. We find that for short chains the interface fracture toughness depends linearly on the degree of polymerization NN of the connector chains, while for longer chains the dependence becomes N3/2N^{3/2}. Based on the geometry of initial chain configuration, we propose a scaling argument that accounts for both short and long chain limits and crossover between them.Comment: 5 pages, 3 figure

    Geophysical and atmospheric evolution of habitable planets

    Get PDF
    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere

    The BepiColombo–Mio Magnetometer en Route to Mercury

    Get PDF
    The fluxgate magnetometer MGF on board the Mio spacecraft of the BepiColombo mission is introduced with its science targets, instrument design, calibration report, and scientific expectations. The MGF instrument consists of two tri-axial fluxgate magnetometers. Both sensors are mounted on a 4.8-m long mast to measure the magnetic field around Mercury at distances from near surface (initial peri-center altitude is 590 km) to 6 planetary radii (11640 km). The two sensors of MGF are operated in a fully redundant way, each with its own electronics, data processing and power supply units. The MGF instrument samples the magnetic field at a rate of up to 128 Hz to reveal rapidly-evolving magnetospheric dynamics, among them magnetic reconnection causing substorm-like disturbances, field-aligned currents, and ultra-low-frequency waves. The high time resolution of MGF is also helpful to study solar wind processes (through measurements of the interplanetary magnetic field) in the inner heliosphere. The MGF instrument firmly corroborates measurements of its companion, the MPO magnetometer, by performing multi-point observations to determine the planetary internal field at higher multi-pole orders and to separate temporal fluctuations from spatial variations

    Three-dimensional spatial structures of solar wind turbulence from 10 000-km to 100-km scales

    Get PDF
    Using the four Cluster spacecraft, we have determined the three-dimensional wave-vector spectra of fluctuating magnetic fields in the solar wind. Three different solar wind intervals of Cluster data are investigated for this purpose, representing three different spatial scales: 10 000 km, 1000 km, and 100 km. The spectra are determined using the wave telescope technique (k-filtering technique) without assuming the validity of Taylor�s frozen-in-flow hypothesis nor are any assumptions made as to the symmetry properties of the fluctuations. We find that the spectra are anisotropic on all the three scales and the power is extended primarily in the directions perpendicular to the mean magnetic field, as might be expected of two-dimensional turbulence, however, the analyzed fluctuations are not axisymmetric. The lack of axisymmetry invalidates some earlier techniques using single spacecraft observations that were used to estimate the percentage of magnetic energy residing in quasitwo- dimensional power. However, the dominance of twodimensional turbulence is consistent with the relatively long mean free paths of cosmic rays in observed in the heliosphere. On the other hand, the spectra also exhibit secondary extended structures oblique from the mean magnetic field direction. We discuss possible origins of anisotropy and asymmetry of solar wind turbulence spectra
    corecore