17 research outputs found
Forward Osmosis as a Pre-Treatment Step for Seawater Dilution and Wastewater Reclamation
This chapter presents the exploration of the combined process of wastewater reclamation and seawater dilution using forward osmosis (FO). Wastewater and seawater are the two most abundant water sources that are free of the hydrological cycle and could serve as an alternative potable water source. Forward osmosis was chosen as the an ideal pre-treatment step to dilute seawater prior to desalination at relatively lower energy demand and low fouling propensity. Membrane fouling behavior was studied and investigated using different feed compositions bearing fractions of effluent organic matter (EfOM). The negative surface charge of all organic foulants was reduced by the adsorption of calcium ions. Filtration of feed streams containing single, simple organic foulants revealed that alginate (polysaccharides) and bovine serum albumin (BSA) resulted in significant loss in process performance as a result of permeate flux reduction. The complex mixture of alginate, BSA and humic acid caused severe loss in membrane performance due to dominant favorable synergistic interactions between foulants and between foulants and membrane surface. The forward osmosis process presents a viable alternative for a simple and effective seawater dilution step using wastewater as the feed solution. Process performance can be improved by selecting a foulant resistant membrane with matching flux
Forward osmosis membrane performance during simulated wastewater reclamation : fouling mechanisms and fouling layer properties
A thin-film composite (TFC) FO membrane was used to study the fouling characteristics of effluent organic matter (EfOM) fractions in treated wastewater effluent represented by alginate, bovine serum albumin, humic acid and octanoic acid. These model foulants were chosen to represent carbohydrates, proteins, humic substances and fatty acids. Inter foulant interactions and their influence on membrane flux loss was established by running series of fouling tests with feed solutions containing mixtures of model foulants. The obtained results demonstrated that under our experimental conditions humic acid (HA) and octanoic acid (OA) had no significant role on permeate flux loss during wastewater treatment over short periods. However, alginate and bovine serum albumin (BSA) and their mixtures caused significant total flux loss, through alginate-calcium complexation that led to the formation of a resistant gel layer on the membrane surface. Protein fouling was mainly attributed to multiple layer adsorption onto the polyamide membrane surface. Mixing alginate with BSA saw a further decline in permeate flux, worse than that caused individually by either of the foulants, and gives an indication of the synergistic effect between the two foulants. There were favourable inter-foulant interactions between the carbohydrates and the proteins that promoted the formation of hybrid aggregates that were deposited on the membrane surface and enhanced flux loss. The additional presence of humic acid to the mixture of BSA and alginate further aggravated membrane fouling. Polysaccharides and proteins were found to be the most dominant foulants during wastewater reclamation. The extent of interactions between the organic foulants had an effect on the fouling layer structure and its role in permeate flux loss
Investigating the fate of natural organic matter at a drinking water treatment plant in South Africa using optical spectroscopy and chemometric analysis
The removal dynamics of biodegradable dissolved organic carbon (BDOC) and natural organic matter (NOM) polarity fractions at a water treatment plant (WTP) in South Africa was studied using UV-Vis absorbance, fluorescence excitation-emission matrix, and two-dimensional synchronous fluorescence spectroscopy (SFS). This study gave insights into the transformation of NOM due to treatment processes. The objectives of the study were: (i) to use chemometric analysis and two-dimensional SFS correlations to investigate the evolution of NOM arising from treatment processes, and (ii) to access the chemical profile dynamics of polarity and BDOC fractions throughout the treatment train. The UV254 absorbance, which indicates aromaticity, reduced by 45% along the WTP. Gaussian fitting of UV-Vis data showed a decreasing trend in intensity and number of bands along the treatment process. The removal efficiency of NOM components followed the order: humiclike (HL) > tyrosine-like (TYL) > fulvic-like (FL) > tryptophan-like (TPL) > microbial-like (MBL). At the source, the relative distribution of the hydrophobic (HPO), hydrophilic (HPI), and transphilic (TPI) fractions was 45%, 31%, and 24%, respectively. The HPI was recalcitrant to treatment, and the TYL component of the HPI fraction was conjectured to be a disinfection byproduct limiting reagent. The HL and FL components of the BDOC fraction were the major substrates for bacterial growth. According to two-dimensional-SFS correlation, TYL, TPL, and MBL varied concurrently across the treatment stages. Used for the first time in South Africa, the robustness of a multi-dimensional approach of optical methods coupled with chemometric tools for the assessment of the fate of NOM along the treatment processes was revealed by this study.Keywords: biodegradable dissolved organic, carbon, natural organic matter, optical spectroscopy, two-dimensional correlations, water treatmen
Clinoptilolite-polypropylene composites for the remediation of water systems polluted with heavy metals and phenolic compounds
M.Sc.In this study, natural and modified clinoptilolite (CLI) reinforced polypropylene (PP) composites possessing improved mechanical and adsorptive properties were prepared through melt-mixing. Determination of morphological, structural and thermal properties was achieved by means of different techniques (FTIR, TGA, DSC, electron microscopy and x-ray spectroscopy). Electron microscopy revealed that increasing filler loading beyond 20% leads to agglomeration of clinoptilolite particles reducing their dispersion within the matrix. Thermal studies showed that the reinforced composites had a lower thermal stability than the neat PP polymer, suggesting that the clinoptilolite interfered with polymer chain arrangement and bonding. It also showed that percentage crystallinity increased with increasing filler loading indicating that the filler particles acted as nucleating agents within the polymeric matrix during composite synthesis. Prior to the ion-exchange studies, water sorption behaviour of fabricated composites was evaluated because ion-exchange/adsorption studies were to be performed in aqueous media. It was therefore observed that the hydrophobic polymer, PP attained the property of water sorption mainly due to the porous structure of the composites created by mixing and extrusion and also by the addition of the hydrophilic filler material
Delayed Solvent–Nonsolvent Demixing Preparation and Performance of a Highly Permeable Polyethersulfone Ultrafiltration Membrane
Membrane performance optimization is a critical preparation step that ensures optimum separation and fouling resistance. Several studies have employed additives such as carbon and inorganic nanomaterials to optimize membrane performance. These particles provide excellent results but are rather costly, unstable and toxic to several biological organs. This study demonstrated that performance enhancement can also be achieved through delayed solvent–nonsolvent demixing during phase inversion membrane preparation. The rate of solvent–nonsolvent demixing was delayed by increasing the concentration of the solvent in the coagulation bath. This study employed synthetic and real water samples and several analytical techniques to compare optimized performances and properties of membranes prepared in this study with that of nanoparticle-embedded membranes in the literature. Pure water flux and BSA rejection of the membranes prepared in this study were comparable to those of nanoparticle embedded membranes. This study also shows the influence of delayed solvent–nonsolvent demixing on membrane properties such as morphology, wettability, surface roughness and porosity, thereby showing the suitability of the technique in membrane optimization. Furthermore, fouling studies showed that membranes prepared in this study have high flux recovery when fouled by humic acid feed water (>95%) and above 50% flux recovery with real water samples
Monitoring the characteristics and removal of natural organic matter fractions in selected south african water treatment plants
This study used spectroscopic methods to investigate the fate and dynamics of natural organic matter (NOM) as it traverses the treatment train at three water treatment plants (WTPs) in South Africa. The character, quantity, and removability of NOM at specific treatment stages was investigated by measuring changes in dissolved organic carbon (DOC) concentration, specific ultra-violet absorbance, UV absorbance, various spectroscopic indices, and maximum fluorescence intensity levels. A novel method of identifying and quantifying fluorescent fractions by combining synchronous fluorescence spectroscopy (SFS) and Gaussian peak fitting is presented. The dynamics of NOM removal were modeled using 2D-SFS correlation spectroscopy. Humic and fulvic substances dominated coastal plants and were the most amenable for removal by coagulation as shown by Hermanus WTP (plant H), which had a 42% DOC removal at the coagulation stage. Tyrosine-like, tryptophan-like and microbial humic-like substances were degraded or transformed concurrently at plant Flag Bushiole (FB) whereas, at plant H, fulvic-like matter was transformed first followed by tyrosine-like then humic-like matter. Through 2D-SFS, this study revealed that NOM transformation was varied as a consequence of NOM character, the type and dosage of treatment chemicals used, and WTPs operational parameters.</p
The removal of pathogenic bacteria and dissolved organic matter from freshwater using microporous membranes: insights into biofilm formation and fouling reversibility
Pathogenic bacteria in drinking-water pose a health risk to consumers, as they compromise the quality of portable water. Chemical disinfection of water containing dissolved organic matter (DOM) causes harmful disinfection by-products. In this work, 4-hydroxybenzoic acid (4-HBA) blended polyethersulfone membranes were fabricated and characterised using microscopic and spectroscopic techniques. The membranes were evaluated for the removal of bacteria and DOM from synthetic and environmental water. Permeate flux increased from 287.30 to 374.60 l m−2 h−1 at 3 bars when 4-HBA increased from 0 to 1.5 wt.%, suggesting that 4-HBA influenced the membrane’s affinity for water. Furthermore, 4-HBA demonstrated antimicrobial properties by inhibiting bacterial growth. The membrane with 1 wt.% 4-HBA recorded 99.4 and 100% bacteria removal in synthetic and environmental water, respectively. Additionally, DOM removal of 55–73% was achieved. A flux recovery ratio (FRR) of 94.6% was obtained when a mixture of bacteria and humic acid was filtered, implying better fouling layer reversibility during cleaning. Furthermore, 100% FRR was achieved when a multimedia granular filtration step was installed prior to membrane filtration. The results illustrated that the membranes had a high permeate flux with low irreversible fouling. This indicated the potential of the membranes in treating complex feed streams using simple cleaning protocols.</p