60 research outputs found

    Accuracy and Time Delay of Glucose Measurements of Continuous Glucose Monitoring and Bedside Artificial Pancreas During Hyperglycemic and Euglycemic Hyperinsulinemic Glucose Clamp Study

    Get PDF
    Background: Glucose values of continuous glucose monitoring (CGM) have time delays compared with plasma glucose (PG) values. Artificial pancreas (STG-55, Nikkiso, Japan) (AP), which measures venous blood glucose directly, also has a time delay because of the long tubing lines from sampling vessel to the glucose sensor. We investigate accuracy and time delay of CGM and AP in comparison with PG values during 2-step glucose clamp study. Methods: Seven patients with type 2 diabetes and 2 healthy volunteers were included in this study. CGM (Enlite sensor, Medtronic, CA) was attached on the day before the experiment. Hyperglycemic (200 mg/dL) clamp was performed for 90 minutes, followed by euglycemic (100 mg/dL) hyperinsulinemic (100 μU/mL) clamp for 90-120 minutes using AP. CGM sensor glucose was calibrated just before and after the clamp study. AP and CGM values were compared with PG values. Results: AP values were significantly lower than PG values at 5, 30 minute during hyperglycemic clamp. In comparison, CGM value at 0 minute was significantly higher, and its following values were almost significantly lower than PG values. The time delay of AP and CGM values to reach maximum glucose levels were 5.0 ± 22.3 (NS) and 28.6 ± 32.5 (p<0.05) min, respectively. Mean absolute rate difference of CGM was significantly higher than AP (24.0 ± 7.6 vs. 15.3 ± 4.6, p < 0.05) during glucose rising period (0-45 min), however, there are no significant difference during other periods. Conclusions: Both CGM and AP failed to follow plasma glucose values during non-physiologically rapid glucose rising, however, indicated accurate values during physiological glucose change

    Sarcopenia and AGEs in type 1 diabetes

    Get PDF
    Accumulation of advanced glycation end-products (AGEs) is thought to contribute to muscle weakness in a diabetic animal model. Skin autofluorescence is a proposed marker for accumulation of AGEs in the skin. We aimed to investigate the relationship between AGEs accumulation, sarcopenia and muscle function of Japanese patients with type 1 diabetes. A total of 36 patients with type 1 diabetes participated in the present cross-sectional study. Sarcopenia parameters (skeletal muscle mass index and knee extension strength) were compared with subcutaneous AGEs accumulation using skin autofluorescence. The prevalence of sarcopenia and impaired knee extension strength was 16.6% (men 0.0%, women 22.2%) and 47.2% (men 22.2%, women 55.6%), respectively. Knee extension strength was negatively correlated with skin autofluorescence (r² = 0.14, P < 0.05), but not with skeletal muscle mass index. In conclusion, the AGEs accumulation might be one of the reasons of impaired lower limb muscle function in Japanese patients with type 1 diabetes

    Skin Autofluorescence and Atherosclerosis

    Get PDF
    Advanced glycation end-products (AGEs) are thought to play a major role in the pathogenesis of diabetic vascular complications. Skin autofluorescence (AF) was recently reported to represent tissue AGEs accumulation with a non-invasive method. The aim of the present study was to evaluate association between AF value and diabetic vascular complications, such as retinopathy, nephropathy and cervical atherosclerosis using the carotid intima-media thickness (IMT), an established marker of cardiovascular disease in patients with type 2 diabetes. A total of 68 patients with type 2 diabetes were enrolled in a cross-sectional manner. AGEs accumulation was measured with AF reader. Clinical parameters were collected at the time of AF and IMT measurement. Max-IMT was correlated with age and AF (r=0.407, p=0.001), but not with HbA1c, GA, and pentosidine. Also, AF was not correlated with HbA1c, GA and pentosidine, but was correlated with age (r=0.560, p<0.001), duration of diabetes (r=0.256, p<0.05). Multivariate regression analysis revealed that AF, but not age, was an independent determinant of max-IMT. In conclusion, AF might be a beneficial surrogate marker for evaluating carotid atherosclerosis in patients with type 2 diabetes non-invasively

    Skin Autofluorescence and Atherosclerosis

    Get PDF
    Advanced glycation end-products (AGEs) are thought to play a major role in the pathogenesis of diabetic vascular complications. Skin autofluorescence (AF) was recently reported to represent tissue AGEs accumulation with a non-invasive method. The aim of the present study was to evaluate association between AF value and diabetic vascular complications, such as retinopathy, nephropathy and cervical atherosclerosis using the carotid intima-media thickness (IMT), an established marker of cardiovascular disease in patients with type 2 diabetes. A total of 68 patients with type 2 diabetes were enrolled in a cross-sectional manner. AGEs accumulation was measured with AF reader. Clinical parameters were collected at the time of AF and IMT measurement. Max-IMT was correlated with age and AF (r=0.407, p=0.001), but not with HbA1c, GA, and pentosidine. Also, AF was not correlated with HbA1c, GA and pentosidine, but was correlated with age (r=0.560, p<0.001), duration of diabetes (r=0.256, p<0.05). Multivariate regression analysis revealed that AF, but not age, was an independent determinant of max-IMT. In conclusion, AF might be a beneficial surrogate marker for evaluating carotid atherosclerosis in patients with type 2 diabetes non-invasively

    Dynapenia and AGEs in type 2 diabetes

    Get PDF
    Aims/Introduction: Advanced glycation end-products (AGEs), which are a major cause of diabetic vascular complications, accumulate in various tissues under chronic hyperglycemic conditions, as well as with aging in patients with diabetes. The loss of muscle mass and strength, so-called sarcopenia and dynapenia, has recently been recognized as a diabetic complication. However, the influence of accumulated AGEs on muscle mass and strength remains unclear. The present study aimed to evaluate the association of sarcopenia and dynapenia with accumulated AGEs in patients with type 2 diabetes. Materials and Methods: We recruited 166 patients with type 2 diabetes aged ≥30 years (mean age 63.2 ± 12.3 years; body mass index 26.3 ± 4.9 kg/m2; glycated hemoglobin 7.1 ± 1.1%). Skin autofluorescence as a marker of AGEs, limb skeletal muscle mass index, grip strength, knee extension strength and gait speed were assessed. Results: Sarcopenia and dynapenia were observed in 7.2 and 13.9% of participants, respectively. Skin autofluorescence was significantly higher in patients with sarcopenia and dynapenia. Skin autofluorescence was the independent determinant for skeletal muscle mass index, grip strength, knee extension strength, sarcopenia and dynapenia. Conclusions: Accumulated AGEs could contribute to reduced muscle mass and strength, leading to sarcopenia and dynapenia in patients with type 2 diabetes

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore