70 research outputs found

    Xanthine derivatives inhibit FTO in an l-ascorbic acid-dependent manner

    Get PDF
    Xanthine derivatives were identified as inhibitors of the N6-methyladenosine (m6A) demethylase activity of fat-mass-and-obesity-associated protein (FTO) by activity-based high-throughput screening using the m6A-sensitive ribonuclease MazF. Pentoxifylline exhibited L-ascorbic acid concentration-dependent inhibitory activity against FTO, an unprecedented mode of inhibition, indicating that L-ascorbic acid is a promising key for designing FTO-specific inhibitors

    Discovery of a Small-Molecule-Dependent Photolytic Peptide

    Get PDF
    We accidentally found that YM-53601, a known small-molecule inhibitor of squalene synthase (SQS), selectively depletes SQS from mammalian cells upon UV irradiation. Further analyses indicated that the photodepletion of SQS requires its short peptide segment located at the COOH terminus. Remarkably, when the 27 amino acid peptide was fused to green fluorescent protein or unrelated proteins at either the NH2 or COOH terminus, such fusion proteins were selectively depleted when the cells were treated with both YM-53601 and UV exposure. Product analysis and electron spin resonance experiments suggested that the UV irradiation promotes homolytic C-O bond cleavage of the aryl ether group in YM-53601. It is likely that the radical species generated from UV-activated YM-53601 abstract hydrogen atoms from the SQS peptide, leading to the photolysis of the entire protein. The pair of the SQS peptide and YM-53601 discovered in the present study paves the way for the design of a new small-molecule-controlled optogenetic tool

    Non-genetic cell-surface modification with a self-assembling molecular glue

    Get PDF
    A versatile non-genetic cell-surface modification method, in which a self-assembling small molecule is combined with Halo-tag proteins, permitted the sell functionalization

    Impact of extracellular matrix on engraftment and maturation of pluripotent stem cell-derived cardiomyocytes in a rat myocardial infarct model

    Get PDF
    Pluripotent stem cell-derived cardiomyocytes show great promise in regenerating the heart after myocardial infarction; however, several uncertainties exist that must be addressed before clinical trials. One practical issue is graft survival following transplantation. Although a pro-survival cocktail with Matrigel has been shown to enhance graft survival, the use of Matrigel may not be clinically feasible. The purpose of this study was to test whether a hyaluronan-based hydrogel, HyStem, could be a substitute for Matrigel. Human induced pluripotent stem cell-derived cardiomyocytes diluted with HyStem alone, HyStem plus pro-survival factors, or a pro-survival cocktail with Matrigel (PSC/MG), were transplanted into a rat model of acute myocardial infarction. Histological analysis at 4 weeks post transplantation revealed that, among the three groups, recipients of PSC/MG showed the largest graft size. Additionally, the grafted cardiomyocytes in the recipients of PSC/MG had a more matured phenotype compared to those in the other two groups. These findings suggest that further studies will be required to enhance not only graft size, but also the maturation of grafted cardiomyocytes.ArticleScientific reports 7(1) : 8630-(2017)journal articl

    A small molecule that blocks fat synthesis by inhibiting the activation of SREBP

    Get PDF
    Sterol regulatory element binding proteins (SREBPs) are transcription factors that activate transcription of the genes involved in cholesterol and fatty acid biosynthesis. In the present study, we show that a small synthetic molecule we previously discovered to block adipogenesis is an inhibitor of the SREBP activation. The diarylthiazole derivative, now called fatostatin, impairs the activation process of SREBPs, thereby decreasing the transcription of lipogenic genes in cells. Our analysis suggests that fatostatin inhibits the ER-Golgi translocation of SREBPs through binding to their escort protein, the SREBP cleavage-activating protein (SCAP), at a distinct site from the sterol-binding domain. Fatostatin blocked increases in body weight, blood glucose, and hepatic fat accumulation in obese ob/ob mice, even under uncontrolled food intake. Fatostatin may serve as a tool for gaining further insights into the regulation of SREBP

    Small molecule-based detection of non-canonical RNA G-quadruplex structures that modulate protein translation

    Get PDF
    Tandem repeats of guanine-rich sequences in RNA often form thermodynamically stable four-stranded RNA structures. Such RNA G-quadruplexes have long been considered to be linked to essential biological processes, yet their physiological significance in cells remains unclear. Here, we report a approach that permits the detection of RNA G-quadruplex structures that modulate protein translation in mammalian cells. The approach combines antibody arrays and RGB-1, a small molecule that selectively stabilizes RNA G-quadruplex structures. Analysis of the protein and mRNA products of 84 cancer-related human genes identified Nectin-4 and CapG as G-quadruplex-controlled genes whose mRNAs harbor non-canonical G-quadruplex structures on their 5′UTR region. Further investigations revealed that the RNA G-quadruplex of CapG exhibits a structural polymorphism, suggesting a possible mechanism that ensures the translation repression in a KCl concentration range of 25–100 mM. The approach described in the present study sets the stage for further discoveries of RNA G-quadruplexes

    Discovery of Self‐Assembling Small Molecules as Vaccine Adjuvants

    Get PDF
    自己集合性ワクチンアジュバントの発見. 京都大学プレスリリース. 2020-10-07.Vaccine ingredients could be hiding in small molecule libraries. 京都大学プレスリリース. 2020-10-07.Immune potentiators, termed adjuvant, trigger early innate immune responses to ensure the generation of robust and long‐lasting adaptive immune responses of vaccines. Here we present study that takes advantage of a self‐assembling small molecule library for the development of a novel vaccine adjuvant. Cell‐based screening of the library and subsequent structural optimization led to the discovery of a simple, chemically tractable deoxycholate derivative (molecule 6 , also named cholicamide) whose well‐defined nano‐assembly potently elicits innate immune responses in macrophages and dendritic cells. Functional and mechanistic analyses indicate that the virus‐like assembly is engulfed inside cells and stimulates the innate immune response through toll‐like receptor 7 (TLR7), an endosomal TLR that detects single‐stranded viral RNA. As an influenza vaccine adjuvant in mice, molecule 6 was as potent as Alum, a clinically used adjuvant. The studies described here paves the way for a new approach to discovering and designing self‐assembling small‐molecule adjuvants against pathogens, including emerging viruses

    Chemical Genetic Identification of the Histamine H1 Receptor as a Stimulator of Insulin-Induced Adipogenesis

    Get PDF
    AbstractA large collection of bioactive compounds with diverse biological effects can be used as probes to elucidate new biological mechanisms that influence a particular cellular process. Here we analyze the effects of 880 well-known small-molecule bioactives or drugs on the insulin-induced adipogenesis of 3T3-L1 fibroblasts, a cell-culture model of fat cell differentiation. Our screen identified 86 compounds as modulators of the adipogenic differentiation of 3T3-L1 cells. Examination of their chemical and pharmacological information revealed that antihistamine drugs with distinct chemical scaffolds inhibit differentiation. Histamine H1 receptor is expressed in 3T3-L1 cells, and its knockdown by small interfering RNA impaired the insulin-induced adipogenic differentiation. Histamine receptors and histamine-like biogenic amines may play a role in inducing adipogenesis in response to insulin

    A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions.

    Get PDF
    Human pluripotent stem cells (hPSCs), including embryonic stem cells and induced pluripotent stem cells, are potentially useful in regenerative therapies for heart disease. For medical applications, clinical-grade cardiac cells must be produced from hPSCs in a defined, cost-effective manner. Cell-based screening led to the discovery of KY02111, a small molecule that promotes differentiation of hPSCs to cardiomyocytes. Although the direct target of KY02111 remains unknown, results of the present study suggest that KY02111 promotes differentiation by inhibiting WNT signaling in hPSCs but in a manner that is distinct from that of previously studied WNT inhibitors. Combined use of KY02111 and WNT signaling modulators produced robust cardiac differentiation of hPSCs in a xeno-free, defined medium, devoid of serum and any kind of recombinant cytokines and hormones, such as BMP4, Activin A, or insulin. The methodology has potential as a means for the practical production of human cardiomyocytes for regeneration therapies
    corecore