94 research outputs found

    The rice OsERF101 transcription factor regulates the NLR Xa1-mediated immunity induced by perception of TAL effectors

    Get PDF
    イネが病原菌の感染力の源を検出して免疫を誘導する仕組みを解明 --病気に強い植物の開発に期待--. 京都大学プレスリリース. 2022-09-07.Plant nucleotide-binding leucine-rich repeat receptors (NLRs) initiate immune responses by recognizing pathogen effectors. The rice gene Xa1 encodes an NLR with an N-terminal BED domain, and recognizes transcription activator-like (TAL) effectors of Xanthomonas oryzae pv. oryzae (Xoo). Our goal is to elucidate the molecular mechanisms controlling the induction of immunity by Xa1. We used yeast two-hybrid assays to screen for host factors that interact with Xa1 and identified the AP2/ERF-type transcription factor OsERF101/OsRAP2.6. Molecular complementation assays were used to confirm the interactions among Xa1, OsERF101, and two TAL effectors. We created OsERF101-overexpressing and knockout mutant lines in rice and identified genes differentially regulated in these lines, many of which are predicted to be involved in regulation of response to stimulus. Xa1 interacts in the nucleus with the TAL effectors and OsERF101 via the BED domain. Unexpectedly, both the overexpression and knockout lines of OsERF101 displayed Xa1-dependent, enhanced resistance to an incompatible Xoo strain. Different sets of genes were up- or down-regulated in the overexpression and knockout lines. Our results indicate that OsERF101 regulates the recognition of TAL effectors by Xa1, and functions as a positive regulator of Xa1-mediated immunity. Further, an additional Xa1-mediated immune pathway is negatively regulated by OsERF101

    Measurements of 0.2 to 20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer

    Get PDF
    We measured low energy cosmic-ray proton and helium spectra in the kinetic energy range 0.215 - 21.5 GeV/n at different solar activities during a period from 1997 to 2002. The observations were carried out with the BESS spectrometer launched on a balloon at Lynn Lake, Canada. A calculation for the correction of secondary particle backgrounds from the overlying atmosphere was improved by using the measured spectra at small atmospheric depths ranging from 5 through 37 g/cm^2. The uncertainties including statistical and systematic errors of the obtained spectra at the top of atmosphere are 5-7 % for protons and 6-9 % for helium nuclei in the energy range 0.5 - 5 GeV/n.Comment: 27 pages, 7 Tables, 9 figures, Submitted to Astroparticle Physic

    Measurement of Low-Energy Cosmic-Ray Antiprotons at Solar Minimum

    Get PDF
    The absolute fluxes of the cosmic-ray antiprotons at solar minimum are measured in the energy range 0.18 to 1.4 GeV, based on 43 events unambiguously detected in BESS '95 data. The resultant energy spectrum appears to be flat below 1 GeV, compatible with a possible admixture of primary antiproton component with a soft energy spectrum, while the possibility of secondary antiprotons alone explaining the data cannot be excluded with the present accuracy. Further improvement of statistical accuracy and extension of the energy range are planned in future BESS flights.Comment: REVTeX, 4 pages including 4 eps figures. Submitted to PR

    Strong suppression of impurity accumulation in steady-state hydrogen discharges with high power NBI heating on LHD

    Get PDF
    Strong suppression of impurity accumulation is observed in long pulse hydrogen discharges with high power NBI (neutral beam injection) heating (Pnbi  >  10 MW) on the large helical device (LHD), even in the impurity accumulation window where the intrinsic impurities such as Fe and C are always accumulated into the plasma core. Density scan experiments in these discharges demonstrate to vanish the window and a new operational regime without impurity accumulation is found in steady state hydrogen discharges. Impurity pinch decreases with increasing ion temperature gradient and carbon Mach number. The peaking of the measured carbon profiles shows strong anti-correlations with the Mach number and its radial gradient. An external torque has a big impact on impurity transport and strong co-current rotation leads to an extremely hollow carbon profile, so-called \u27impurity hole\u27 observed in high ion temperature modes. Impurity pinch in the plasmas with net zero torque input (balanced NBI injection) is also strongly reduced by increasing ion temperature gradient, which can drive turbulent modes. The combination effect of turbulence and toroidal rotation plays an important role in the impurity transport

    Measurements of Proton, Helium and Muon Spectra at Small Atmospheric Depths with the BESS Spectrometer

    Full text link
    The cosmic-ray proton, helium, and muon spectra at small atmospheric depths of 4.5 -- 28 g/cm^2 were precisely measured during the slow descending period of the BESS-2001 balloon flight. The variation of atmospheric secondary particle fluxes as a function of atmospheric depth provides fundamental information to study hadronic interactions of the primary cosmic rays with the atmosphere.Comment: 21 pages, 11 figures, 4 table

    Precision Measurement of Cosmic-Ray Antiproton Spectrum

    Full text link
    The energy spectrum of cosmic-ray antiprotons has been measured in the range 0.18 to 3.56 GeV, based on 458 antiprotons collected by BESS in recent solar-minimum period. We have detected for the first time a distinctive peak at 2 GeV of antiprotons originating from cosmic-ray interactions with the interstellar gas. The peak spectrum is reproduced by theoretical calculations, implying that the propagation models are basically correct and that different cosmic-ray species undergo a universal propagation. Future BESS flights toward the solar maximum will help us to study the solar modulation and the propagation in detail and to search for primary antiproton components.Comment: REVTeX, 4 pages including 4 eps figure

    Measurements of Primary and Atmospheric Cosmic-Ray Spectra with the BESS-TeV Spectrometer

    Get PDF
    Primary and atmospheric cosmic-ray spectra were precisely measured with the BESS-TeV spectrometer. The spectrometer was upgraded from BESS-98 to achieve seven times higher resolution in momentum measurement. We report absolute fluxes of primary protons and helium nuclei in the energy ranges, 1-540 GeV and 1-250 GeV/n, respectively, and absolute flux of atmospheric muons in the momentum range 0.6-400 GeV/c.Comment: 26 pages, 9 figures, 3 tables, Submitted to Phys. Lett.

    Precise Measurements of Atmospheric Muon Fluxes with the BESS Spectrometer

    Full text link
    The vertical absolute fluxes of atmospheric muons and muon charge ratio have been measured precisely at different geomagnetic locations by using the BESS spectrometer. The observations had been performed at sea level (30 m above sea level) in Tsukuba, Japan, and at 360 m above sea level in Lynn Lake, Canada. The vertical cutoff rigidities in Tsukuba (36.2 N, 140.1 E) and in Lynn Lake (56.5 N, 101.0 W) are 11.4 GV and 0.4 GV, respectively. We have obtained vertical fluxes of positive and negative muons in a momentum range from 0.6 to 20 GeV/c with systematic errors less than 3 % in both measurements. By comparing the data collected at two different geomagnetic latitudes, we have seen an effect of cutoff rigidity. The dependence on the atmospheric pressure and temperature, and the solar modulation effect have been also clearly observed. We also clearly observed the decrease of charge ratio of muons at low momentum side with at higher cutoff rigidity region.Comment: 35 pages, 9 figures. Submitted to Astroparticle Physic

    A New Limit on the Flux of Cosmic Antihelium

    Get PDF
    A very sensitive search for cosmic-ray antihelium was performed using data obtained from three scientific flights of BESS magnetic rigidity spectrometer. We have not observed any antihelium; this places a model-independent upper limit (95 % C.L.) on the antihelium flux of 6*10**(-4) m**(-2)sr**(-1)s**(-1) at the top of the atmosphere in the rigidity region 1 to 16 GV, after correcting for the estimated interaction loss of antihelium in the air and in the instrument. The corresponding upper limit on the Hebar/He flux ratio is 3.1*10**(-6), 30 times more stringent than the limits obtained in similar rigidity regions with magnetic spectrometers previous to BESS.Comment: REVTeX, 4 pages (including 5 EPS figures). Submitted to PR
    corecore