100 research outputs found
Exploiting exciton-exciton interactions in semiconductor quantum dots for quantum-information processing
We propose an all-optical implementation of quantum-information processing in
semiconductor quantum dots, where electron-hole excitations (excitons) serve as
the computational degrees of freedom (qubits). We show that the strong dot
confinement leads to an overall enhancement of Coulomb correlations and to a
strong renormalization of the excitonic states, which can be exploited for
performing conditional and unconditional qubit operations.Comment: 5 pages revtex, 2 encapsulated postscript figures. Accepted for
publication in Phys. Rev. B (Rapid Communication
Determining the electronic performance limitations in top-down fabricated Si nanowires with mean widths down to 4 nm
Silicon nanowires have been patterned with mean widths down to 4 nm using top-down lithography and dry etching. Performance-limiting scattering processes have been measured directly which provide new insight into the electronic conduction mechanisms within the nanowires. Results demonstrate a transition from 3-dimensional (3D) to 2D and then 1D as the nanowire mean widths are reduced from 12 to 4 nm. The importance of high quality surface passivation is demonstrated by a lack of significant donor deactivation, resulting in neutral impurity scattering ultimately limiting the electronic performance. The results indicate the important parameters requiring optimization when fabricating nanowires with atomic dimensions
Vertical Confinement and Evolution of Reentrant Insulating Transition in the Fractional Quantum Hall Regime
We have observed an anomalous shift of the high field reentrant insulating
phases in a two-dimensional electron system (2DES) tightly confined within a
narrow GaAs/AlGaAs quantum well. Instead of the well-known transitions into the
high field insulating states centered around , the 2DES confined
within an 80\AA-wide quantum well exhibits the transition at .
Comparably large quantum lifetime of the 2DES in narrow well discounts the
effect of disorder and points to confinement as the primary driving force
behind the evolution of the reentrant transition.Comment: 5 pages, 4 figure
Few-Particle Effects in Semiconductor Quantum Dots: Observation of Multi-Charged-Excitons
We investigate experimentally and theoretically few-particle effects in the
optical spectra of single quantum dots (QDs). Photo-depletion of the QD
together with the slow hopping transport of impurity-bound electrons back to
the QD are employed to efficiently control the number of electrons present in
the QD. By investigating structurally identical QDs, we show that the spectral
evolutions observed can be attributed to intrinsic, multi-particle-related
effects, as opposed to extrinsic QD-impurity environment-related interactions.
From our theoretical calculations we identify the distinct transitions
related to excitons and excitons charged with up to five additional electrons,
as well as neutral and charged biexcitons.Comment: 4 pages, 4 figures, revtex. Accepted for publication in Physical
Review Letter
Comments on Hastings' Additivity Counterexamples
Hastings recently provided a proof of the existence of channels which violate
the additivity conjecture for minimal output entropy. In this paper we present
an expanded version of Hastings' proof. In addition to a careful elucidation of
the details of the proof, we also present bounds for the minimal dimensions
needed to obtain a counterexample.Comment: 38 page
Recommended from our members
Consensus Statement on the Pathology of IgG4-Related Disease
IgG4-related disease is a newly recognized fibro-inflammatory condition characterized by several features: a tendency to form tumefactive lesions in multiple sites; a characteristic histopathological appearance; andâoften but not alwaysâelevated serum IgG4 concentrations. An international symposium on IgG4-related disease was held in Boston, MA, on 4â7 October 2011. The organizing committee comprising 35 IgG4-related disease experts from Japan, Korea, Hong Kong, the United Kingdom, Germany, Italy, Holland, Canada, and the United States, including the clinicians, pathologists, radiologists, and basic scientists. This group represents broad subspecialty expertise in pathology, rheumatology, gastroenterology, allergy, immunology, nephrology, pulmonary medicine, oncology, ophthalmology, and surgery. The histopathology of IgG4-related disease was a specific focus of the international symposium. The primary purpose of this statement is to provide practicing pathologists with a set of guidelines for the diagnosis of IgG4-related disease. The diagnosis of IgG4-related disease rests on the combined presence of the characteristic histopathological appearance and increased numbers of IgG4+ plasma cells. The critical histopathological features are a dense lymphoplasmacytic infiltrate, a storiform pattern of fibrosis, and obliterative phlebitis. We propose a terminology scheme for the diagnosis of IgG4-related disease that is based primarily on the morphological appearance on biopsy. Tissue IgG4 counts and IgG4:IgG ratios are secondary in importance. The guidelines proposed in this statement do not supplant careful clinicopathological correlation and sound clinical judgment. As the spectrum of this disease continues to expand, we advocate the use of strict criteria for accepting newly proposed entities or sites as components of the IgG4-related disease spectrum
Polarization-dependent Rabi oscillations in single InGaAs quantum dots
Measurements of optical Rabi oscillations in the excited states of individual InGaAs are presented. Under pulsed resonant excitation we observe Rabi oscillations with increasing pulse area, which are damped after the first maximum and minimum. We show that the observed damping comes from an additional non-resonant generation of carriers in the quantum dot. The observation of Rabi oscillations provides an efficient way of directly measuring the excitonic transitions' dipole moments. A polarization anisotropy of the dipole moment is resolved in some of the quantum dots
Fabrication and characterization of freestanding GaAs/AlGaAs core-shell nanowires and AlGaAs nanotubes by using selective-area metalorganic vapor phase epitaxy
We fabricated GaAs/AlGaAs core-shell nanowires by using selective-area metalorganic vapor phase epitaxy. First, GaAs nanowires were selectively grown on partially masked GaAs (111)B substrates; then AlGaAs was grown to form freestanding heterostructured nanowires. Investigation of nanowire diameter as a function of AlGaAs growth time suggested that the AlGaAs was grown on the sidewalls of the GaAs nanowires, forming GaAs/AlGaAs core-shell structures. Microphotoluminescence measurements of GaAs and GaAs/AlGaAs core-shell nanowires reveal an enhancement of photoluminescence intensity in GaAs/AlGaAs core-shell structures. Based on these core-shell nanowires, AlGaAs nanotubes were formed by using anisotropic dry etching and wet chemical preferential etching to confirm the formation of a core-shell structure and to explore a new class of materials
Growth of GaAs/AlGaAs hexagonal pillars on GaAs (1 1 1)B surfaces by selective-area MOVPE
We report on the growth of GaAs and GaAs/AlGaAs heterostructured hexagonal pillar structures using selective area (SA) metalorganic vapor phase epitaxy (MOVPE). By performing growth on SiO2-masked (1 1 1)B GaAs substrates with circular or hexagonal hole openings, extremely uniform array of hexagonal GaAs/AlGaAs pillars consisting {1 1 0} vertical facets with their diameter of order of 100 nm were obtained. Unexpectedly, strong intense light emission was observed for the room temperature photoluminescence measurement of the pillar arrays in triangular lattice, which is promising for the application to the photonic crystals to enhance the light extraction efficiency from the materials with high refractive index. Furthermore, it was also found that hexagonal pillars with size 60 nm and large aspect ratio (>100) by reducing the size of initial hole size of mask, opening a possibility to grow nanowires using epitaxial growth
- âŠ