33 research outputs found

    Rotating and infalling motion around the high-mass young stellar object Cepheus A-HW2 observed with the methanol maser at 6.7 GHz

    Full text link
    We have measured the internal proper motions of the 6.7 GHz methanol masers associated with Cepheus A (Cep A) HW2 using Very Long Baseline Interferometery (VLBI) observations. We conducted three epochs of VLBI monitoring observations of the 6.7 GHz methanol masers in Cep A-HW2 with the Japanese VLBI Network (JVN) over the period between 2006-2008. In 2006, we were able to use phase-referencing to measure the absolute coordinates of the maser emission with an accuracy of a few milliarcseconds. We compared the maser distribution with other molecular line observations that trace the rotating disk. We measured the internal proper motions for 29 methanol maser spots, of which 19 were identified at all three epochs and the remaining ten at only two epochs. The magnitude of proper motions ranged from 0.2 to 7.4 km/s, with an average of 3.1 km/s. Although there are large uncertainties in the observed internal proper motions of the methanol maser spots in Cep A, they are well fitted by a disk that includes both rotation and infall velocity components. The derived rotation and infall velocities at the disk radius of 680 au are 0.5 +- 0.7 and 1.8 +- 0.7 km/s, respectively. Assuming that the modeled disk motion accurately represents the accretion disk around the Cep A-HW2 high-mass YSO, we estimated the mass infall rate to be 3 x 10^{-4} n_8 Msun/yr (n_8 is the gas volume density in units of 10^{8} cm^{-3}). The combination of the estimated mass infall rate and the magnitude of the fitted infall velocity suggests that Cep A-HW2 is at an evolutionary phase of active gas accretion from the disk onto the central high-mass YSO. The infall momentum rate is estimated to be 5 x 10^{-4} n_8 Msun/yr km/s, which is larger than the estimated stellar radiation pressure of the HW2 object, supporting the hypothesis that this object is in an active gas accretion phase.Comment: 16 pages, 6 figures, 5 tables, accepted for publication in Astronomy & Astrophysic

    Intermittent maser flare around the high mass young stellar object G353.273+0.641 I: data & overview

    Full text link
    We have performed VLBI and single-dish monitoring of 22 GHz H2_{2}O maser emission from the high mass young stellar object G353.273+0.641 with VERA (VLBI Exploration of Radio Astrometry) and Tomakamai 11-m radio telescope. Two maser flares have been detected, separated almost two years. Frequent VLBI monitoring has revealed that these flare activities have been accompanied by structural change of the prominent shock front traced by H2O maser alignments. We have detected only blue-shifted emissions and all maser features have been distributed within very small area of 200 ×\times 200 au2^{2} in spite of wide velocity range (> 100 km s1^{-1}). The light curve shows notably intermittent variation and suggests that the H2_{2}O masers in G353.273+0.641 are excited by episodic radio jet. The time-scale of \sim2 yr and characteristic velocity of \sim500 km s1^{-1} also support this interpretation. Two isolated velocity components of C50 (-53 \pm 7 km s1^{-1}) and C70 (-73 \pm 7 km s1^{-1}) have shown synchronised linear acceleration of the flux weighted V_{\rmn{LSR}} values (\sim-5 km s1^{-1} yr1^{-1}) during the flare phase. This can be converted to the lower-limit momentum rate of 1.1 \times 103^{-3} M_{\sun} km s1^{-1} yr1^{-1}. Maser properties are quite similar to that of IRAS 20126+4104 especially. This corroborates the previous suggestion that G353.273+0.641 is a candidate of high mass protostellar object. The possible pole-on geometry of disc-jet system can be suitable for direct imaging of the accretion disc in this case.Comment: 13 pages, 5 figures accepted for publication in MNRA

    Microstructure and kinematics of H2O masers in the massive star forming region IRAS 06061+2151

    Full text link
    We have made multi-epoch VLBI observations of H2O maser emission in the massive star forming region IRAS 06061+2151 with the Japanese VLBI network (JVN) from 2005 May to 2007 October. The detected maser features are distributed within an 1\arcsec×\times1\arcsec (2000 au×\times2000 au at the source position) around the ultra-compact H {\small\bf II} region seen in radio continuum emission. Their bipolar morphology and expanding motion traced through their relative proper motions indicate that they are excited by an energetic bipolar outflow. Our three-dimensional model fitting has shown that the maser kinematical structure in IRAS 06061+2151 is able to be explained by a biconical outflow with a large opening angle (>> 50\degr). The position angle of the flow major axis coincides very well with that of the large scale jet seen in 2.1\:\mu\rmn{m} hydrogen emission. This maser geometry indicates the existence of dual structures composed of a collimated jet and a less collimated massive molecular flow. We have also detected a large velocity gradient in the southern maser group. This can be explained by a very small (on a scale of several tens of au) and clumpy (the density contrast by an order of magnitude or more) structure of the parental cloud. Such a structure may be formed by strong instability of shock front or splitting of high density core.Comment: 14 pages, 6 figures accepted for publication in MNRA

    The bursting variability of 6.7 GHz methanol maser of G33.641-0.228

    No full text

    British television news in the 1990s Newsworthiness in a multi-organisational and multi-programme environment

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN014458 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    New Detection of an Extremely Blue-shift Dominated Jet in G353.273+0.641: A Possible Disk-Jet System on 100 AU Scale

    No full text
    We report a new detection of an unusual molecular jet from a high mass protostellar object G353.273+0.641 using the NRO 45m telescope. Newly detected SiO (υ = 0, J = 2-1) jet shows highly blue-shift dominated spectrum similar to the associated 22 GHz maser emission. The remarkable blue-shift dominance in both of the maser and SiO emission can be caused by a compact (< 170 AU) and optically thick face-on disk, masking the red-shifted part of the jet
    corecore