567 research outputs found
Ab-initio Green's Functions Calculations of Atoms
The Faddeev random phase approximation (FRPA) method is applied to calculate
the ground state and ionization energies of simple atoms. First ionization
energies agree with the experiment at the level of ~10 mH or less. Calculations
with similar accuracy are expected to provide information required for
developing the proposed quasiparticle-DFT method.Comment: Proceedings of 'The 6th Japan-Italy symposium on Heavy Ion Physics',
Mito, Japan, Nov. 200
Enhanced collectivity in 74Ni
The neutron-rich nucleus 74Ni was studied with inverse-kinematics inelastic
proton scattering using a 74Ni radioactive beam incident on a liquid hydrogen
targetat a center-of-mass energy of 80 MeV. From the measured de-excitation
gamma-rays, the population of the first 2+ state was quantified. The
angle-integrated excitation cross section was determined to be 14(4) mb. A
deformation length of delta = 1.04(16) fm was extracted in comparison with
distorted wave theory, which suggests that the enhancement of collectivity
established for 70Ni continues up to 74Ni. A comparison with results of shell
model and quasi-particle random phase approximation calculations indicates that
the magic character of Z = 28 or N = 50 is weakened in 74Ni
One-neutron knockout reaction of 17C on a hydrogen target at 70 MeV/nucleon
First experimental evidence of the population of the first 2- state in 16C
above the neutron threshold is obtained by neutron knockout from 17C on a
hydrogen target. The invariant mass method combined with in-beam gamma-ray
detection is used to locate the state at 5.45(1) MeV. Comparison of its
populating cross section and parallel momentum distribution with a Glauber
model calculation utilizing the shell-model spectroscopic factor confirms the
core-neutron removal nature of this state. Additionally, a previously known
unbound state at 6.11 MeV and a new state at 6.28(2) MeV are observed. The
position of the first 2- state, which belongs to a member of the lowest-lying
p-sd cross shell transition, is reasonably well described by the shell-model
calculation using the WBT interaction.Comment: 15 pages, 3 figure
Search for low lying dipole strength in the neutron rich nucleus Ne
Coulomb excitation of the exotic neutron-rich nucleus Ne on a
Pb target was measured at 58 A.MeV in order to search for low-lying E1
strength above the neutron emission threshold. Data were also taken on an
Al target to estimate the nuclear contribution. The radioactive beam
was produced by fragmentation of a 95 A.MeV Ar beam delivered by the
RIKEN Research Facility. The set-up included a NaI gamma-ray array, a charged
fragment hodoscope and a neutron wall. Using the invariant mass method in the
Ne+n channel, we observe a sizable amount of E1 strength between 6 and
10 MeV. The reconstructed Ne angular distribution confirms its E1
nature. A reduced dipole transition probability of B(E1)=0.490.16
is deduced. For the first time, the decay pattern of low-lying
strength in a neutron-rich nucleus is obtained. The results are discussed in
terms of a pygmy resonance centered around 9 MeV
Measurement of excited states in 40Si and evidence for weakening of the N=28 shell gap
Excited states in 40Si have been established by detecting gamma-rays
coincident with inelastic scattering and nucleon removal reactions on a liquid
hydrogen target. The low excitation energy, 986(5) keV, of the 2+[1] state
provides evidence of a weakening in the N=28 shell closure in a neutron-rich
nucleus devoid of deformation-driving proton collectivity.Comment: accepted for publication in PR
Structure of 55Sc and development of the N=34 subshell closure
The low-lying structure of Sc has been investigated using in-beam
-ray spectroscopy with the Be(Ti,Sc+)
one-proton removal and Be(Sc,Sc+)
inelastic-scattering reactions at the RIKEN Radioactive Isotope Beam Factory.
Transitions with energies of 572(4), 695(5), 1539(10), 1730(20), 1854(27),
2091(19), 2452(26), and 3241(39) keV are reported, and a level scheme has been
constructed using coincidence relationships and -ray
relative intensities. The results are compared to large-scale shell-model
calculations in the - model space, which account for positive-parity
states from proton-hole cross-shell excitations, and to it ab initio
shell-model calculations from the in-medium similarity renormalization group
that includes three-nucleon forces explicitly. The results of proton-removal
reaction theory with the eikonal model approach were adopted to aid
identification of positive-parity states in the level scheme; experimental
counterparts of theoretical and states are
suggested from measured decay patterns. The energy of the first
state, which is sensitive to the neutron shell gap at the Fermi surface, was
determined. The result indicates a rapid weakening of the subshell
closure in -shell nuclei at , even when only a single proton occupies
the orbital
- …