125 research outputs found
Ab initio study on the magneto-structural properties of MnAs
The magnetic and structural properties of MnAs are studied with ab initio
methods, and by mapping total energies onto a Heisenberg model. The stability
of the different phases is found to depend mainly on the volume and on the
amount of magnetic order, confirming previous experimental findings and
phenomenological models. It is generally found that for large lattice constants
the ferromagnetic state is favored, whereas for small lattice constants
different antiferromagnetic states can be stabilized. In the ferromagnetic
state the structure with minimal energy is always hexagonal, whereas it becomes
orthorhombically distorted if there is an antiferromagnetic component in the
hexagonal plane. For the paramagnetic state the stable cell is found to be
orthorhombic up to a critical lattice constant of about 3.7 Angstrom, above
which it remains hexagonal. This leads to the second order structural phase
transition between paramagnetic states at about 400 K, where the lattice
parameter increases above this critical value with rising temperature due to
the thermal expansion. For the paramagnetic state an analytic approximation for
the magnitude of the orthorhombic distortion as a function of the lattice
constant is given. Within the mean field approximation the dependence of the
Curie temperature on the volume and on the orthorhombic distortion is
calculated. For orthorhombically distorted cells the Curie temperature is much
smaller than for hexagonal cells. This is mainly due to the fact that some of
the exchange coupling constants in the hexagonal plane become negative for
distorted cells. With these results a description of the susceptibility as
function of temperature is given
Fermi Surface Nesting and the Origin of the Charge Density Wave in NbSe
We use highly accurate density functional calculations to study the band
structure and Fermi surfaces of NbSe2. We calculate the real part of the
non-interacting susceptibility, Re chi_0(q), which is the relevant quantity for
a charge density wave (CDW) instability and the imaginary part, Im chi_0(q),
which directly shows Fermi surface (FS) nesting. We show that there are very
weak peaks in Re chi_0(q) near the CDW wave vector, but that no such peaks are
visible in Im chi_0(q), definitively eliminating FS nesting as a factor in CDW
formation. Because the peak in Re chi_0(q) is broad and shallow, it is unlikely
to be the direct cause of the CDW instability. We briefly address the
possibility that electron-electron interactions (local field effects) produce
additional structure in the total (renormalized) susceptibility, and we discuss
the role of electron-ion matrix elements.Comment: Replacement of Table II values, minor changes to tex
Fabrication and superconductivity of NaxTaS2 crystals
In this paper we report the growth and superconductivity of
crystals. The structural data deduced from X-ray diffraction pattern shows that
the sample has the same structure as . A series of crystals with
different superconducting transition temperatures () ranging from 2.5 K to
4.4 K were obtained. It is found that the rises with the increase of
content determined by Energy-Dispersive x-ray microanalysis(EDX) of Scanning
Electron Microscope (SEM) on these crystals. Compared with the resistivity
curve of un-intercalated sample ( = 0.8 K, 70
K), no signal of charge density wave (CDW) was observed in samples
and . However, in some samples with lower
, the CDW appears again at about 65 K. Comparison between the anisotropic
resistivity indicates that the anisotropy becomes smaller in samples with more
intercalation (albeit a weak semiconducting behavior along c-axis) and
thus higher . It is thus concluded that there is a competition between the
superconductivity and the CDW. With the increase of sodium content, the rise of
in is caused mainly by the suppression to the CDW in
, and the conventional rigid band model for layered dichalcogenide
may be inadequate to explain the changes induced by the slight intercalation of
sodium in .Comment: 8 pages, 13 figures, To appear in Physical Review
Constraints on the luminosity of the stellar remnant in SNR1987A
We obtain photometric constraints on the luminosity of the stellar remnant in
SNR1987A using XMM-Newton and INTEGRAL data. The upper limit in the 2--10 keV
band based on the XMM-Newton data is L<5*10^{34}erg/s. We note, however, that
the optical depth of the envelope is still high in the XMM-Newton band,
therefore, this upper limit does not constrain the true unabsorbed luminosity
of the central source. The optical depth is expected to be small in the hard
X-ray band of the IBIS telescope aboard the INTEGRAL observatory, therefore it
provides an unobscured look at the stellar remnant. We did not detect
statistically significant emission from SN1987A in the 20-60 keV band with the
upper limit of L<1.1*10^{36}erg/s. We also obtained an upper limit on the mass
of radioactive 44Ti M(44Ti)<10^{-3}Msun.Comment: 5 pages, 3 figures, accepted for publication in Astronomy Letter
Development of portable NMR polarimeter system for polarized HD target
A portable NMR polarimeter system has been developed to measure the
polarization of a polarized Hydrogen-Deuteride (HD) target for hadron
photoproduction experiments at SPring-8. The polarized HD target is produced at
the Research Center for Nuclear Physics (RCNP), Osaka university and is
transported to SPring-8. The HD polarization should be monitored at both
places. We have constructed the portable NMR polarimeter system by replacing
the devices in the conventional system with the software system with PCI
eXtensions for Instrumentation (PXI). The weight of the NMR system is downsized
from 80 kg to 7 kg, and the cost is reduced to 25%. We check the performance of
the portable NMR polarimeter system. The signal-to-noise (S/N) ratio of the NMR
signal for the portable system is about 50% of that for the conventional NMR
system. This performance of the portable NMR system is proved to be compatible
with the conventional NMR system for the polarization measurement.Comment: 6 page, 8 figures, 2011/Mar/9 Replace Author
CDW, Superconductivity and Anomalous Metallic Behavior in 2D Transition Metal Dichalcogenides
We propose a theory for quasi-two-dimensional transition metal
dichalcogenides that provides a unified microscopic picture of the charge
density wave (CDW) and superconducting phases. We show, based on the
electron-phonon coupling and Fermi surface topology, that a CDW order parameter
with six-fold symmetry and nodes (f-wave) gives a consistent description of the
available experimental data. The elementary excitations in the CDW phase are
Dirac electrons. The superconducting state has its origin on the attractive
interaction mediated by phonons. The theory predicts strong deviations from
Fermi liquid theory in the CDW phase.Comment: 4 pages, 3 figure
Large magnetic entropy change near room temperature in antipervoskite SnCMn3
We report the observation of large magnetocaloric effect near room
temperature in antipervoskite SnCMn3. The maximal magnetic entropy change at
the first-order ferrimagnetic-paramagnetic transition temperature (TC 279 K) is
about 80.69mJ/cm3 K and 133mJ/cm3 K under the magnetic field of 20 kOe and 48
kOe, respectively. These values are close to those of typical magnetocaloric
materials. The large magnetocaloric effect is associated with the sharp change
of lattice, resistivity and magnetization in the vicinity of TC. Through the
measurements of Seebeck coefficient and normal Hall effect, the title system is
found to undergo a reconstruction of electronic structure at TC. Considering
its low-cost and innocuous raw materials, Mn-based antiperovskite compounds are
suggested to be appropriate for pursuing new materials with larger
magnetocaloric effect.Comment: 11 pages, 8 figure
Vibrio parahaemolyticus, enterotoxigenic Escherichia coli, enterohemorrhagic Escherichia coli and Vibrio cholerae
This review highlighted the following: (i) pathogenic mechanism of the thermostable direct hemolysin produced by Vibrio parahaemolyticus, especially on its cardiotoxicity, (ii) heat-labile and heat-stable enterotoxins produced by enterotoxigenic Escherichia coli, especially structureâactivity relationship of heat-stable enterotoxin, (iii) RNA N-glycosidase activity of Vero toxins (VT1 and VT2) produced by enterohemorrhagic Escherichia coli O157:H7, (iv) discovery of Vibrio cholerae O139, (v) isolation of new variant of Vibrio cholerae O1 El Tor that carries classical ctxB, and production of high concentration of cholera toxin by these strains, and (vi) conversion of viable but nonculturable (VBNC) Vibrio cholerae to culturable state by co-culture with eukaryotic cells
Enhancement of Cell Membrane Invaginations, Vesiculation and Uptake of Macromolecules by Protonation of the Cell Surface
The different pathways of endocytosis share an initial step involving local inward curvature of the cellâs lipid bilayer. It has been shown that to generate membrane curvature, proteins or lipids enforce transversal asymmetry of the plasma membrane. Thus it emerges as a general phenomenon that transversal membrane asymmetry is the common required element for the formation of membrane curvature. The present study demonstrates that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesiculation accompanied by efficient uptake of macromolecules (Dextran-FITC, 70 kD), relative to the constitutive one. The insensitivity of proton induced uptake to inhibiting treatments and agents of the known endocytic pathways suggests the entry of macromolecules to proceeds via a yet undefined route. This is in line with the fact that neither ATP depletion, nor the lowering of temperature, abolishes the uptake process. In addition, fusion mechanism such as associated with low pH uptake of toxins and viral proteins can be disregarded by employing the polysaccharide dextran as the uptake molecule. The proton induced uptake increases linearly in the extracellular pH range of 6.5 to 4.5, and possesses a steep increase at the range of 4> pH>3, reaching a plateau at pHâ€3. The kinetics of the uptake implies that the induced vesicles release their content to the cytosol and undergo rapid recycling to the plasma membrane. We suggest that protonation of the cellâs surface induces local charge asymmetries across the cell membrane bilayer, inducing inward curvature of the cell membrane and consequent vesiculation and uptake
- âŠ