We use highly accurate density functional calculations to study the band
structure and Fermi surfaces of NbSe2. We calculate the real part of the
non-interacting susceptibility, Re chi_0(q), which is the relevant quantity for
a charge density wave (CDW) instability and the imaginary part, Im chi_0(q),
which directly shows Fermi surface (FS) nesting. We show that there are very
weak peaks in Re chi_0(q) near the CDW wave vector, but that no such peaks are
visible in Im chi_0(q), definitively eliminating FS nesting as a factor in CDW
formation. Because the peak in Re chi_0(q) is broad and shallow, it is unlikely
to be the direct cause of the CDW instability. We briefly address the
possibility that electron-electron interactions (local field effects) produce
additional structure in the total (renormalized) susceptibility, and we discuss
the role of electron-ion matrix elements.Comment: Replacement of Table II values, minor changes to tex