8 research outputs found

    Simulation of Liquid Rocket Engine Failure Propagation Using Self-Evolving Scenarios

    Get PDF
    Traditional probabilistic risk assessment approaches often require failure scenarios to be explicitly defined through event sequences that are then quantified as part of the integrated analysis. This approach becomes difficult when failure propagation paths change as a function of the system operation. Additionally, if the propagation paths represent interactions among even a modest number of components, the scenario count becomes combinatorially intractable. This paper presents an alternate approach for quantifying the probability of failure propagation in such a case. Rather than explicitly defining scenario sequences, simple physical models are created for each of the components. In this way, only the physical states and rules of component interactions must be defined, rather than event sequences for each individual scenario. Initiating failures are introduced into the system, either randomly or as defined by relative likelihood, and the failures cascade through the system via the interaction rules. This process is repeated using Monte Carlo methods and, as a result, the most probable scenarios self-evolve in terms of both sequence path and frequency. This approach was applied to failures occurring in the engine compartment of a space launch vehicle with four liquid rocket engines and four high-pressure helium tanks. Each engine was modeled with key components, such as turbomachinery, combustion chamber, propellant lines, and additional support systems. Three test cases were conducted with different high-energy engine failures. End results of interest included an additional engine-out failure and tank burst, which represent the loss-of-mission (LOM) and loss-of-crew (LOC) failure environments, respectively. Observations show that almost every scenario outcome is unique and that many scenarios involve complex chain reactions that are difficult to predict. This validates the usefulness of the modeling approach in assessing the overall risks to the crew during a launch vehicle abort

    An Integrated Physics-Based Risk Model for Assessing the Asteroid Threat

    Get PDF
    Although most asteroids and other near-Earth objects (NEOs) do not pose a threat to Earths inhabitants, impacts from objects that are just tens of meters in diameter can cause significant damage if they occur over a populated area. This paper forms the foundation of an effort at NASA Ames Research Center to quantify these risks and identify the greatest risk-driving parameters and uncertainties. An integrated risk model that couples dynamic probabilistic simulations of strike occurrences with physics-based models of NEO impact damage factors has been developed to generate casualty estimates for a range of NEO impact properties. Currently, the model focuses on the risk due to blast overpressure damage from airbursts and impacts on land. The model is first used to reproduce results from established sources, and then is extended to perform sensitivity studies that yield greater insights into risk driving parameters. Results show that meteor strength and entry angle play a role for small to mid-size NEOs, and that accounting for the specific target location significantly affects casualty estimates and dominates the risk. Future work will continue to refine and expand the models to better characterize key impact risk factors, include additional types of threats such as tsunamis and climate effects, and ultimately support assessments of potential asteroid mitigation strategies

    Conceptual Launch Vehicle and Spacecraft Design for Risk Assessment

    Get PDF
    One of the most challenging aspects of developing human space launch and exploration systems is minimizing and mitigating the many potential risk factors to ensure the safest possible design while also meeting the required cost, weight, and performance criteria. In order to accomplish this, effective risk analyses and trade studies are needed to identify key risk drivers, dependencies, and sensitivities as the design evolves. The Engineering Risk Assessment (ERA) team at NASA Ames Research Center (ARC) develops advanced risk analysis approaches, models, and tools to provide such meaningful risk and reliability data throughout vehicle development. The goal of the project presented in this memorandum is to design a generic launch 7 vehicle and spacecraft architecture that can be used to develop and demonstrate these new risk analysis techniques without relying on other proprietary or sensitive vehicle designs. To accomplish this, initial spacecraft and launch vehicle (LV) designs were established using historical sizing relationships for a mission delivering four crewmembers and equipment to the International Space Station (ISS). Mass-estimating relationships (MERs) were used to size the crew capsule and launch vehicle, and a combination of optimization techniques and iterative design processes were employed to determine a possible two-stage-to-orbit (TSTO) launch trajectory into a 350-kilometer orbit. Primary subsystems were also designed for the crewed capsule architecture, based on a 24-hour on-orbit mission with a 7-day contingency. Safety analysis was also performed to identify major risks to crew survivability and assess the system's overall reliability. These procedures and analyses validate that the architecture's basic design and performance are reasonable to be used for risk trade studies. While the vehicle designs presented are not intended to represent a viable architecture, they will provide a valuable initial platform for developing and demonstrating innovative risk assessment capabilities

    A Wind-powered Rover for a Low-Cost Venus Mission

    Get PDF
    Venus, with a surface temperature of 450 C and an atmospheric pressure 90 times higher than that of the Earth, is a difficult target for exploration. However, high-temperature electronics and power systems now being developed make it possible that future missions may be able to operate in the Venus environment. Powering such a rover within the scope of a Discovery class mission will be difficult, but harnessing Venus' surface winds provides a possible way to keep a powered rover small and light. This project scopes out the feasibility of a wind-powered rover for Venus surface missions. Two rover concepts, a land-sailing rover and a wind-turbine-powered rover, were considered. The turbine-powered rover design is selected as being a low-risk and low-cost strategy. Turbine detailed analysis and design shows that the turbine can meet mission requirements across the desired range of wind speeds by utilizing three constant voltage generators at fixed gear ratios

    Flight mechanics experiment onboard nasa’s zero gravity aircraft

    Get PDF
    This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and creative solutions through hands-on experimental design and testing in reduced gravity conditions. A group of undergraduate students from California State Polytechnic University, Pomona, participated in the NASA’s SEED (Systems Engineering Educational Discovery) Reduced Gravity Program, which focuses on addressing systems engineering challenges in microgravity. The team worked with a NASA Principal Investigator on a project to build and fly a prototype test article to demonstrate emergency atmospheric reentry with single-axis control. Through this experience, the team was able to gain hands-on experience with spacecraft instrumentation and learn valuable lessons in teamwork and systems engineering that can be applied to real-world situations. As part of the SEED program, the team shared its experience with local high schools in order to spark interest in STEM-related fields in the next generation of scientists and engineers.Peer Reviewe

    Flight mechanics experiment onboard Nasa's zero gravity aircraft

    No full text
    This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and creative solutions through hands-on experimental design and testing in reduced gravity conditions. A group of undergraduate students from California State Polytechnic University, Pomona, participated in the NASA�s SEED (Systems Engineering Educational Discovery) Reduced Gravity Program, which focuses on addressing systems engineering challenges in microgravity. The team worked with a NASA Principal Investigator on a project to build and fly a prototype test article to demonstrate emergency atmospheric reentry with single-axis control. Through this experience, the team was able to gain hands-on experience with spacecraft instrumentation and learn valuable lessons in teamwork and systems engineering that can be applied to real-world situations. As part of the SEED program, the team shared its experience with local high schools in order to spark interest in STEM-related fields in the next generation of scientists and engineers

    Flight mechanics experiment onboard nasa’s zero gravity aircraft

    No full text
    This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and creative solutions through hands-on experimental design and testing in reduced gravity conditions. A group of undergraduate students from California State Polytechnic University, Pomona, participated in the NASA’s SEED (Systems Engineering Educational Discovery) Reduced Gravity Program, which focuses on addressing systems engineering challenges in microgravity. The team worked with a NASA Principal Investigator on a project to build and fly a prototype test article to demonstrate emergency atmospheric reentry with single-axis control. Through this experience, the team was able to gain hands-on experience with spacecraft instrumentation and learn valuable lessons in teamwork and systems engineering that can be applied to real-world situations. As part of the SEED program, the team shared its experience with local high schools in order to spark interest in STEM-related fields in the next generation of scientists and engineers

    Flight mechanics experiment onboard nasa’s zero gravity aircraft

    Get PDF
    This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and creative solutions through hands-on experimental design and testing in reduced gravity conditions. A group of undergraduate students from California State Polytechnic University, Pomona, participated in the NASA’s SEED (Systems Engineering Educational Discovery) Reduced Gravity Program, which focuses on addressing systems engineering challenges in microgravity. The team worked with a NASA Principal Investigator on a project to build and fly a prototype test article to demonstrate emergency atmospheric reentry with single-axis control. Through this experience, the team was able to gain hands-on experience with spacecraft instrumentation and learn valuable lessons in teamwork and systems engineering that can be applied to real-world situations. As part of the SEED program, the team shared its experience with local high schools in order to spark interest in STEM-related fields in the next generation of scientists and engineers
    corecore