36 research outputs found

    Maximum depth sequencing reveals an ON/OFF replication slippage switch and apparent in vivo selection for bifidobacterial pilus expression

    Get PDF
    The human gut microbiome, of which the genus Bifidobacterium is a prevalent and abundant member, is thought to sustain and enhance human health. Several surface-exposed structures, including so-called sortase-dependent pili, represent important bifidobacterial gut colonization factors. Here we show that expression of two sortase-dependent pilus clusters of the prototype Bifidobacterium breve UCC2003 depends on replication slippage at an intragenic G-tract, equivalents of which are present in various members of the Bifidobacterium genus. The nature and extent of this slippage is modulated by the host environment. Involvement of such sortase-dependent pilus clusters in microbe-host interactions, including bacterial attachment to the gut epithelial cells, has been shown previously and is corroborated here for one case. Using a Maximum Depth Sequencing strategy aimed at excluding PCR and sequencing errors introduced by DNA polymerase reagents, specific G-tract sequences in B. breve UCC2003 reveal a range of G-tract lengths whose plasticity within the population is functionally utilized. Interestingly, replication slippage is shown to be modulated under in vivo conditions in a murine model. This in vivo modulation causes an enrichment of a G-tract length which appears to allow biosynthesis of these sortase-dependent pili. This work provides the first example of productive replication slippage influenced by in vivo conditions. It highlights the potential for microdiversity generation in “beneficial” gut commensals

    Diversity, ecology and intestinal function of bifidobacteria

    No full text
    The human gastrointestinal tract represents an environment which is a densely populated home for a microbiota that has evolved to positively contribute to host health. At birth the essentially sterile gastrointestinal tract (GIT) is rapidly colonized by microorganisms that originate from the mother and the surrounding environment. Within a short timeframe a microbiota establishes within the (breastfed) infant's GIT where bifidobacteria are among the dominant members, although their numerical dominance disappears following weaning. The numerous health benefits associated with bifidobacteria, and the consequent commercial relevance resulting from their incorporation into functional foods, has led to intensified research aimed at the molecular understanding of claimed probiotic attributes of this genus. In this review we provide the current status on the diversity and ecology of bifidobacteria. In addition, we will discuss the molecular mechanisms that allow this intriguing group of bacteria to colonize and persist in the GIT, so as to facilitate interaction with its host

    Analysis of Small Non-coding RNAs as Signaling Intermediates of Environmentally Integrated Responses to Abiotic Stress

    No full text
    International audienceResearch to date on abiotic stress responses in plants has been largely focused on the plant itself, but current knowledge indicates that microorganisms can interact with and help plants during periods of abiotic stress. In our research, we aim to investigate the interkingdom communication between the plant root and the rhizo-microbiota. Our investigation showed that miRNA plays a pivotal role in this interkingdom communication. Here, we describe a protocol for the analysis of miRNA secreted by the plant root, which includes all of the steps from the isolation of the miRNA to the bioinformatics analysis. Because of their short nucleotide length, Next Generation Sequencing (NGS) library preparation from miRNAs can be challenging due to the presence of dimer adapter contaminants. Therefore, we highlight some strategies we adopt to inhibit the generation of dimer adapters during library preparation. Current screens of miRNA targets mostly focus on the identification of targets present in the same organism expressing the miRNA. Our bioinformatics analysis challenges the barrier of evolutionary divergent organisms to identify candidate sequences of the microbiota targeted by the miRNA of plant roots. This protocol should be of interest to researchers investigating interkingdom RNA-based communication between plants and their associated microorganisms, particularly in the context of holobiont responses to abiotic stresses

    Transformation efficiencies and transposition frequencies.

    No full text
    *<p>Transformation efficiencies and transposition frequencies were determined following electroporation of a replicative vector, namely pAM5, or a tetracycline-resistant TN5 transposome, respectively, into <i>B. breve</i> UCC2003 competent cells grown in different carbohydrates. Transposition events are average of independent duplicates.</p

    Strains, plasmids and primers used.

    No full text
    <p>Restriction sites are underlined and a rho-transcriptional terminator sequence is highlighted in bold. NCFB, National Collection of Food Bacteria.</p

    Genomic position and surrounding regions of the insertion site of a number of transposon insertion mutants that were isolated based on their inability to grow on one or more carbohydrates.

    No full text
    <p>The diagram was drawn to scale using <i>B. breve</i> UCC2003 genome sequence information. White open arrowheads represent the location of the transposon with the specific location indicated as the genome coordinate based on accession number CP000303. Red arrows represent transposon-disrupted open reading frames. Grey arrows represent flanking open reading frames. Lollipops indicate transcriptional terminators predicted by ARNold Web server (<a href="http://rna.igmors.u-psud.fr/toolbox/arnold/" target="_blank">http://rna.igmors.u-psud.fr/toolbox/arnold/</a>).</p
    corecore