17 research outputs found

    Biodegradable elastic nanofibrous platforms with integrated flexible heaters for on-demand drug delivery

    Get PDF
    Delivery of drugs with controlled temporal profiles is essential for wound treatment and regenerative medicine applications. For example, bacterial infection is a key challenge in the treatment of chronic and deep wounds. Current treatment strategies are based on systemic administration of high doses of antibiotics, which result in side effects and drug resistance. On-demand delivery of drugs with controlled temporal profile is highly desirable. Here, we have developed thermally controllable, antibiotic-releasing nanofibrous sheets. Poly(glycerol sebacate)- poly(caprolactone) (PGS-PCL) blends were electrospun to form elastic polymeric sheets with fiber diameters ranging from 350 to 1100 nm and substrates with a tensile modulus of approximately 4-8 MPa. A bioresorbable metallic heater was patterned directly on the nanofibrous substrate for applying thermal stimulation to release antibiotics on-demand. In vitro studies confirmed the platform’s biocompatibility and biodegradability. The released antibiotics were potent against tested bacterial strains. These results may pave the path toward developing electronically controllable wound dressings that can deliver drugs with desired temporal patterns

    Smart Bandage for Monitoring and Treatment of Chronic Wounds

    Get PDF
    Chronic wounds are a major health concern and they affect the lives of more than 25 million people in the United States. They are susceptible to infection and are the leading cause of nontraumatic limb amputations worldwide. The wound environment is dynamic, but their healing rate can be enhanced by administration of therapies at the right time. This approach requires real-time monitoring of the wound environment with on-demand drug delivery in a closed-loop manner. In this paper, a smart and automated flexible wound dressing with temperature and pH sensors integrated onto flexible bandages that monitor wound status in real-time to address this unmet medical need is presented. Moreover, a stimuli-responsive drug releasing system comprising of a hydrogel loaded with thermo-responsive drug carriers and an electronically controlled flexible heater is also integrated into the wound dressing to release the drugs on-demand. The dressing is equipped with a microcontroller to process the data measured by the sensors and to program the drug release protocol for individualized treatment. This flexible smart wound dressing has the potential to significantly impact the treatment of chronic wounds

    Dermal Patch with Integrated Flexible Heater for on Demand Drug Delivery

    No full text
    Topical administration of drugs and growth factors in a controlled fashion can improve the healing process during skin disorders and chronic wounds. To achieve this goal, a dermal patch is engineered that utilizes thermoresponsive drug microcarriers encapsulated within a hydrogel layer attached to a flexible heater with integrated electronic heater control circuitry. The engineered patch conformally covers the wound area and enables controlled drug delivery by electronically adjusting the temperature of the hydrogel layer. The drugs are encapsulated inside microparticles in order to control their release rates. These monodisperse thermoresponsive microparticles containing active molecules are fabricated using a microfluidic device. The system is used to release two different active molecules with molecular weights similar to drugs and growth factors and their release profiles are characterized. This platform is a key step towards engineering smart and closed loop systems for topical applications

    Nanofibrous Silver-Coated Polymeric Scaffolds with Tunable Electrical Properties

    Get PDF
    Electrospun micro- and nanofibrous poly(glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) substrates have been extensively used as scaffolds for engineered tissues due to their desirable mechanical properties and their tunable degradability. In this study, we fabricated micro/nanofibrous scaffolds from a PGS-PCL composite using a standard electrospinning approach and then coated them with silver (Ag) using a custom radio frequency (RF) sputtering method. The Ag coating formed an electrically conductive layer around the fibers and decreased the pore size. The thickness of the Ag coating could be controlled, thereby tailoring the conductivity of the substrate. The flexible, stretchable patches formed excellent conformal contact with surrounding tissues and possessed excellent pattern-substrate fidelity. In vitro studies confirmed the platform’s biocompatibility and biodegradability. Finally, the potential controlled release of the Ag coating from the composite fibrous scaffolds could be beneficial for many clinical applications
    corecore