4,099 research outputs found
Automatic detection of coronaries ostia in computed tomography angiography volume data
Background: Heart coronaries emerge from the ascending aorta lateral sides from two points called the coronaries ostia. To automatically segment the heart coronaries; there must be a starting point (seed) for the segmentation. In this paper we present a fully automatic approach to segment the coronaries ostia towards automatic seeding for heart coronaries segmentation.Methods: Our algorithm takes as an input a CTA volume of segmented aorta cross sections that represents our region of interest. Then the ostia detection algorithm traverses that volume looking for the ostia points in an automatic fashion. The proposed algorithm depends on the anatomical features of the ostia. The main anatomic feature of the ostia is that it appears like a curvature or corner on the segmented ascending aorta cross section. Therefore we adopted in our methodology a modified version of Harris Corner Detection; besides inducing some anatomical features of the ostia location with respect to the aortic valve.Results: The proposed algorithm is tested and validated on the computed tomography angiography database provided by the Rotterdam coronary artery algorithm evaluation framework. The proposed automatic ostia detection algorithm succeeded to detect both ostia points in all the test cases. Also, the detected ostia points’ coordinates are validated versus a ground truth provided by the same framework with deviation between the results of the detection process and the ground truth having a min of 0 pixels and a max of 10 pixels for all test cases.Conclusions: Thus the proposed algorithm gives accurate results in comparison with the ground truth, which proves the efficiency of the proposed algorithm and its applicability to be extended as a seed for heart coronaries segmentation
Model-based Automatic Segmentation of Ascending Aorta from Multimodality Medical Data
Automatic Ascending Aorta Segmentation is one of the important steps towards automatic segmentation of the whole cardiac tree. This paper presents a novel approach for the automatic segmentation of the ascending aorta from two imaging modalities: CTA (Computed Tomography Angiography) and PC-MRI (Phase-Contrast Magnetic Resonance Images). The novel approach is an algorithm that works without the need for setting manual seed points or applying preprocessing steps or setting a region of interest. Instead, the proposed algorithm automatically detects and segments the ascending aorta using an ascending aorta model built from its anatomical features. The proposed segmentation algorithm begins with aorta detection through features model fitting augmented with Hough transform, where the ascending aorta is identified from the descending aorta and any other circular structures based on the proposed model. After detection, the whole ascending aorta is segmented up from the aortic arch down to the ostia points using a novel automatic seeded region growing algorithm. The proposed algorithm is fully automatic, works in real-time and robust as parameters used are the same for all the tested datasets. The detection and segmentation of the ascending aorta succeeded in all test cases acquired from the two imaging modalities; proving the robustness of the proposed ascending aorta model and algorithm for the automatic segmentation process even on data from different modalities and different scanner types. The accuracy of the segmentation has a mean Dice Similarity Coefficient (DSC) of 94.72% for CTA datasets and 97.13% for PC-MRI datasets
A Simple Heliodon System for Horizontal Placed Models
Most probably, all our buildings are affected by sunlight. Hence, the ignorance of the sun's impact results in overheating, glare, and missed opportunities for the positive use of daylight, leading to wasted energy. Heliodon is considered to be a powerful tool that can aid students, professionals, building developers and users to better understand the relationship between the sun's path and its effects on the architectural model(s). Most of the heliodons are relatively expensive and complex in operation. Thus, the need to design and build a simple and relatively inexpensive one emerged. It was proposed to work on this heliodon as a team project in the environmental control class “fall-2016”. The authors put the design concept and introduced a mathematical calculations table to be used with the physical heliodon, while nine students participated in the manufacturing process. The design concept is based on determining the sun's position by converting the Altitude and Azimuth angels to their corresponding measurements on the (X, Y & Z) coordinates (in relation to the observer's location). One light source can be moved on a set of graded tubes assembled in the shape of a wire frame box (thus the X, Y & Z distances could be measured) to simulate the sun's position and its lighting conditions for any latitude, at any time for any chosen day
Sparsity-Based Error Detection in DC Power Flow State Estimation
This paper presents a new approach for identifying the measurement error in
the DC power flow state estimation problem. The proposed algorithm exploits the
singularity of the impedance matrix and the sparsity of the error vector by
posing the DC power flow problem as a sparse vector recovery problem that
leverages the structure of the power system and uses -norm minimization
for state estimation. This approach can provably compute the measurement errors
exactly, and its performance is robust to the arbitrary magnitudes of the
measurement errors. Hence, the proposed approach can detect the noisy elements
if the measurements are contaminated with additive white Gaussian noise plus
sparse noise with large magnitude. The effectiveness of the proposed
sparsity-based decomposition-DC power flow approach is demonstrated on the IEEE
118-bus and 300-bus test systems
Assessment of Specific Yield and Storage Capacity of Groundwater using Borehole Log
The study aimed at evaluating the specific yield and storage capacity of groundwater in Chapai Nawabganj District of Bangladesh using borehole log data. The boring log samples from different layers were collected from each Upazila (administrative area) of the District. The specific yield of each Upazila was determined by the Cooper-Jacob method using Math lab software and storage of groundwater was then ascertained by a mathematical formula. The specific yield of the five Upazilas was determined and the values were found around 10 (%) which indicates good permeability of the areas, except Bholahat Upazila. The results illustrate that Nachole Upazila has a large storage volume, i.e., 49,305 Hec-m, but the other Upazilas have a storage capacity between 8000 to 18000 Hec-m. The storage capacity of the five Upazilas followed the order: Nachole>Nawabganj>Shibganj>Gomastapur> Bholahat. The highest number of DTWs at Nachole Upazila extracted 8848 Hec-m indicating excessive extraction concerning sustainable water management. A well-planned water resource management would have to be taken to achieve sustainable use of groundwater for irrigation aiming to achieve food security as well as an ecologically friendly environment. Keywords: Borehole, groundwater, storage, specific yield, storage capacity DOI: 10.7176/JEES/10-8-02 Publication date:August 31st 202
Assessment of vehicular live load and load factors for design of short-span bridges according to the new Egyptian Code
AbstractThe new Egyptian Code (ECP-201:2012) introduces new vehicular live loads (VLL) and new load combinations for the design of roadway bridges. The new VLL and load combinations introduced in ECP-201:2012 are fundamentally different than those presented in previous versions of the code. The impact of these new loads and load combinations on the design of new bridges or the structural safety of the existing bridges that have been designed according to ECP-201:2003 or ECP-201:1993 has not been fully addressed for the different bridge deck systems. Three different bridge deck systems, i.e. concrete I-shaped girders, composite steel plate girders, and concrete box-girders with different spans were numerically modeled using two-dimensional grillage analogy. The bridge decks were analyzed under main gravity loads using VLL according to ECP-201:2012 and ECP-201:2003. The internal forces of individual load cases, total un-factored load combination, and total factored load combination of ECP-201:2012 and ECP-201:2003 were compared.The study shows that concrete box-girders designed according to ECP-201:2012 and ECP-201:2003 using the ultimate limit state method yield almost the same demand. Despite the increase in the VLL of ECP-201:2012, and consequently the live load forces, concrete I-shaped girder bridges will be subjected to less total factored internal forces in comparison to ECP-201:2003 This is attributed to the interaction between the live to dead loads ratio and the load combinations. Design of composite steel plate girder bridges according to ECP-201:2012 using the allowable stress design method yields over designed sections
Effect of salinity degree of injected water on oil recovery from carbonate reservoir
32-37Water injection is considered the most successful and widespread secondary recovery method. Low salinity water injections is a well-established and proved technique for water flooding application in sandstone rocks to enhance the recovery efficiency; where the water salinity is adapted to a certain degree to extract the highest amount of oil from a reservoir. Reserve-estimation statistics show the significance of oil reserves in carbonate reservoirs, hence this work deals with the carbonate rocks where water flooding may fail due to many reasons, and the most common one is fractures existence in the carbonate rocks. This work applied the water injection for six carbonate (limestone) core samples from Belayim Formation of Middle Miocene age that extracted from an Egyptian offshore oil field in the Gulf of Suez. This carbonate facies is hard, vuggy, fragmented, dolomitic, and highly saturated with oil and considered a good reservoir. Relative permeability test was carried out to investigate the reservoir response in terms of recovery efficiency hence residual oil saturation, when flooding the reservoir with waters having different salinity ratios. Results showed an increase in recovery efficiency for all the tested samples, on applying the low salinity water injection, where all the relative permeability curves displayed wettability modification/alteration toward water wetness properties
Missing at random assumption made more plausible: evidence from the 1958 British birth cohort
Objective:
Non-response is unavoidable in longitudinal surveys. The consequences are lower statistical power
and the potential for bias. We implemented a systematic data-driven approach to identify predictors
of non-response in the National Child Development Study (NCDS; 1958 British birth cohort). Such
variables can help make the missing at random assumption more plausible, which has implications for
the handling of missing data. /
Study Design and Setting:
We identified predictors of non-response using data from the 11 sweeps (birth to age 55) of the NCDS
(n = 17,415), employing parametric regressions and the LASSO for variable selection. /
Results:
Disadvantaged socio-economic background in childhood, worse mental health and lower cognitive
ability in early life, and lack of civic and social participation in adulthood were consistently associated
with non-response. Using this information, along with other data from NCDS, we were able to replicate
the “population distribution” of educational attainment and marital status (derived from external
data), and the original distributions of key early life characteristics. /
Conclusion:
The identified predictors of non-response have the potential to improve the plausibility of the missing
at random assumption. They can be straightforwardly used as “auxiliary variables” in analyses with
principled methods to reduce bias due to missing data
- …