42 research outputs found

    Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications

    No full text
    Zn and Zn-based alloys have been recognized as highly promising biodegradable materials for orthopedic implants and cardiovascular stents, due to their proved biocompatibility and, more importantly, lower corrosion rates compared to Mg alloys. However, pure Zn has poor mechanical properties. In this study, Ag is used as a promising alloying element to improve the mechanical properties of the Zn matrix as well as its biocompatibility and antibacterial properties. Accordingly, we design three ZnAg alloys with Ag content ranging from 2.5 to 7.0wt% and investigate the influence of the Ag content on mechanical and corrosion behavior of the alloys. The alloys are developed by casting process and homogenized at 410°C for 6h and 12h, followed by hot extrusion at 250°C with extrusion ratio of 14:1. Degradation behavior is assessed by electrochemical and static immersion tests in Hank's modified solution. Microstructural analysis reveals that hot extrusion significantly reduces the grain size of the alloys. Zn-7.0%Ag alloy shows a reasonably equiaxed and considerably refined microstructure with mean grain size of 1.5μm. Tensile tests at room temperature suggest that increasing the Ag content steadily enhances the tensile strength, while it does not affect the tensile ductility significantly. Zn-7.0%Ag shows high yield strength and ultimate tensile strength of 236MPa and 287MPa, respectively, which is due to the grain refinement and high volume fraction of fine AgZn3 particles precipitating along the grain boundaries during the extrusion process. Among all these alloys, Zn-7.0%Ag displayed superplasticity over a wide range of strain rates (from 5×10(-4)s(-1) to 1.0×10(-2)s(-1)) providing the possibility of exploiting forming processes at rapid rates and/or even at lower temperatures. In addition, extruded alloys exhibit slightly faster degradation rate than pure Zn. X-ray diffraction results show the presence of ZnO and Zn(OH)2 on the degraded surfaces. Moreover, scanning electron microscopy imaging reveals that micro-galvanic corrosion is more pronounced on the alloys with higher Ag content due to the higher volume fraction of AgZn3 particles. [Abstract copyright: Copyright © 2017 Elsevier B.V. All rights reserved.

    Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications

    Get PDF
    Ultra-fine grained ZK60 Mg alloy was obtained by multi-pass equal-channel angular pressing at different temperatures of 250. \ub0C, 200. \ub0C and 150. \ub0C. Microstructural observations showed a significant grain refinement after ECAP, leading to an equiaxed and ultrafine grain (UFG) structure with average size of 600. nm. The original extrusion fiber texture with planes oriented parallel to extrusion direction was gradually undermined during ECAP process and eventually it was substituted by a newly stronger texture component with considerably higher intensity, coinciding with ECAP shear plane. A combination of texture modification and grain refinement in UFG samples led to a marked reduction in mechanical asymmetric behavior compared to the as-received alloy, as well as adequate mechanical properties with about 100% improvement in elongation to failure while keeping relatively high tensile strength. Open circuit potential, potentiodynamic and weight loss measurements in a phosphate buffer solution electrolyte revealed an improved corrosion resistance of UFG alloy compared to the extruded one, stemming from a shift of corrosion regime from localized pitting in the as-received sample to a more uniform corrosion mode with reduced localized attack in ECAP processed alloy. Compression tests on immersed samples showed that the rate of loss of mechanical integrity in the UFG sample was lower than that in the as-received sample

    Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg2Si composites for biodegradable implant applications

    No full text
    Recently, Fe and Fe-based alloys have shown their potential as degradable materials for biomedical applications. Nevertheless, the slow corrosion rate limits their performance in certain situations. The shift to iron matrix composites represents a possible approach, not only to improve the mechanical properties, but also to accelerate and tune the corrosion rate in a physiological environment. In this work, Fe-based composites reinforced by Mg2Si particles were proposed. The initial powders were prepared by different combinations of mixing and milling processes, and finally consolidated by hot rolling. The influence of the microstructure on mechanical properties and corrosion behavior of Fe/Mg2Si was investigated. Scanning electron microscopy and X-ray diffraction were used for the assessment of the composite structure. Tensile and hardness tests were performed to characterize the mechanical properties. Potentiodynamic and static corrosion tests were carried out to investigate the corrosion behavior in a pseudo-physiological environment. Samples with smaller Mg2Si particles showed a more homogenous distribution of the reinforcement. Yield and ultimate tensile strength increased when compared to those of pure Fe (from 400 MPa and 416 MPa to 523 MPa and 630 MPa, respectively). Electrochemical measurements and immersion tests indicated that the addition of Mg2Si could increase the corrosion rate of Fe even twice (from 0.14 to 0.28 mm·yearâ\u88\u92 1). It was found that the preparation method of the initial composite powders played a major role in the corrosion process as well as in the corrosion mechanism of the final composite
    corecore