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Abstract 

A novel Mg-2.0Zn-0.5Ca-0.4Mn alloy has been formulated and processed through melt spinning and hot 

extrusion to enhance its mechanical and degradation properties. Microstructural characterization of 

rapidly solidified alloy ribbons consolidated by extrusion revealed a fine and fully recrystallized 

microstructure with average size of 4 µm. The conventionally extruded alloy consisted of several course 

second-phase strips as coarse as 100 µm, while the extrusion-consolidated ribbons were devoid of any 

second phases larger than 100 nm. Rapid solidification followed by extrusion processing resulted in 

significantly randomized texture where the majority of the basal planes were tilted toward transverse and 

extrusion directions. Such a weak texture resulted in higher activity of basal planes and thereby 

considerably improved the fracture elongation from 4% to 19%, while retaining relatively high tensile 

strength of 294 MPa. In addition to high strength and ductility due to the reduced activity of deformation 

twining during compression, the extrusion-consolidated alloy ribbons showed lower yielding asymmetric 

ratio than that measured for the conventionally extruded alloy (1.25 versus 1.61). Electrochemical 

measurements and immersion tests indicated that application of rapid solidification followed by extrusion 

remarkably reduced the corrosion rate from 2.49 mm/year to 0.37 mm/year due to recrystallization 

completion and suppression of coarse second-phase formation. 
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1. Introduction 

Magnesium (Mg) alloys have received increasing attention as potential metallic materials for 

biodegradable orthopedic applications owing to their excellent biocompatibility, low density, and 

Young’s modulus close to that of bone [1]. However, current Mg alloys degrade rapidly at the initial stage 

of implantation, causing excessive release of degradation products. In particular, the release of hydrogen 

(if the corrosion occurs quickly) can create gas pockets that might delay tissue healing at the implantation 

site, which results in necrosis [2]. Moreover, the rapid corrosion process of Mg alloys is accompanied by 

the release of a large amount of hydrogen gas, which can delay bone healing and even result in gas 

embolism [3]. Because of concerns regarding initial strength and rapid degradation, Mg alloys have been 

used primarily in non-loadbearing applications, including for screws used in surgical correction of hallux 

rigidus [4]. Therefore, it is of paramount importance to design Mg alloy implants with appropriate 

mechanical and corrosion behavior. Alloying Mg with rare-earth elements (REEs) results in increased 

mechanical properties and reduced degradation times [5]. However, alongside the high cost and natural 



resource scarcity of REEs, there is a lack of consensus on their safe dosage; therefore, long-term clinical 

studies are required to provide appropriate feedback [6]. Hence, moving toward Mg alloys consisting of 

nutrient and osteoinductive elements with improved mechanical and degradation properties is of great 

interest for orthopedic applications. This confines the alloying element selection window to a few 

elements including zinc (Zn), calcium (Ca), and strontium (Sr). 

Thus far, among the many Mg alloys explored as orthopedic implant materials, the Mg-Zn-Ca alloy 

system has attracted extensive attention, as both Zn and Ca are the most nutritionally essential elements in 

the human body [7, 8]. From the mechanical properties point of view, Zn shows relatively high solubility 

in Mg (about 6.2 wt.% at 325°C in equilibrium state) and thus can effectively improve the mechanical 

properties of Mg through the solid-solution strengthening and age-hardening mechanisms [9]. On the 

other hand, considering the low solubility of Ca in Mg (about 0.7 wt.% at 518°C in equilibrium state), 

addition of Ca results in marked grain refinement during solidification due to formation of Mg2Ca and 

Ca2Mg6Zn3 intermetallics [1]. Formation of these intermetallics promotes dynamic recrystallization 

during the thermomechanical processing through the particle stimulated nucleation mechanism and, as a 

consequence, enhances the strength and toughness of Mg alloys [10, 11]. Previous studies have reported 

that eutectic (α-Mg + Ca2Mg6Zn3) phase forms in Mg–Zn–Ca alloys when the Zn/Ca atomic ratio is 

greater than 1.2 while eutectic (α-Mg + Ca2Mg6Zn3 + Mg2Ca) phase appears when this ratio is less than 

1.2 [12]. The electrochemical corrosion potential order for the aforementioned phases is as follows: 

Mg2Ca < α-Mg < Ca2Mg6Zn3, thus in alloys contacting both Ca-containing phases, Mg2Ca preferentially 

dissolves to α-Mg whereas α-Mg and Mg2Ca preferentially dissolve to Ca2Mg6Zn3 [13]. The corrosion of 

Mg alloys is mainly governed by galvanic coupling [14], thus the presence of secondary phases with 

different corrosion potentials compared with the Mg matrix remarkably accelerates the corrosion 

behavior. The microstructure of Mg-Zn-Ca alloys is heterogeneous even after hot processing, as the 

formation of coarse Ca2Mg6Zn3 stringers elongated toward the processing direction is inevitable [11]. 

This accelerates the corrosion rate of these alloys by promoting the galvanic coupling between secondary 

phases and the α-Mg matrix. Accordingly, achieving high mechanical strength, which is possible by 

increasing the Zn and Ca contents, is always accompanied by deterioration of the corrosion properties. 

For this reason, this alloy system is inferior to REE-containing alloys, as it fails to simultaneously satisfy 

the mechanical and corrosion requirements. 

 

An ideal biodegradable Mg implant should be devoid of coarse secondary phases. Previous studies have 

demonstrated that second-phase refinement down to the submicron regime can drastically improves the 

corrosion resistance and its uniformity, while remarkably enhancing the mechanical strength through 

promotion of particle dispersion strengthening [15, 16]. A novel experimental methodology for 

production of degradable REE-free Mg alloys with tailored mechanical and degradation behaviour 

without changing the alloy’s elemental composition is introduced herein. In the present work, Mg-2.0Zn-

0.5Ca (in wt.%) with trace (0.4 wt.%) addition of Mn was selected. Mn is recognized as a grain refiner 

and promotes grain refinement strengthening. Accordingly, the microstructure of the Mg-2.0Zn-0.5Ca-

0.4Mn alloy was engineered by applying rapid solidification followed by hot extrusion, then its 

microstructural, mechanical, and corrosion properties were evaluated and compared with those of the 

conventionally extruded alloy. 

 



2. Experimental Procedures 

2.1.Materials and Methods 

Pure Mg (99.9%), Zn (99.99%), Mn (99.93%) and Mg-30wt.% Ca master alloy were used for production 

of the alloy in this work. The alloy was cast at 710℃ using permanent mold casting in an electric 

resistance furnace. The melting process was carried out under a protective atmosphere of CO2 + SF6. The 

melt was poured into a steel mold, with diameter of 40 mm. The alloy ingot was homogenized at 350℃ 
for 12 h then extruded at 350℃ with an extrusion ratio of 16:1 to form cylindrical rods. The alloy ingot 

was remelted in a vacuum induction furnace at 750℃ under argon atmosphere. The melt was then ejected 

onto a copper wheel rotating at a speed of 1500 RPM and rapidly solidified to ribbons with thickness and 

width of approximately 50 µm and 2 mm, respectively. The alloy ribbons were compacted and extruded 

at 400°C with an extrusion ratio and speed of 10:1 and 0.3 mm s-1, respectively.  

2.2.Microstructural Analysis 

All the investigated samples were cut to longitudinal sections. The samples were ground and polished 

following standard metallographic procedures. Microstructure was observed by scanning electron 

microscopy (SEM, XL 40; Philips). The macrotexture of the alloys was evaluated by x-ray diffraction 

(XRD) analysis (X’Pert Pro MRD; PANalytical) using Cu Kα radiation. Transmission electron 

microscopy (TEM) samples were prepared using standard routes, i.e. grinding and polishing the 

specimens to < 40 µm followed by ion beam milling using a GATAN precision ion polishing system II 

(PIPSII) to electron transparency. Ion beam milling was performed at liquid nitrogen temperature using 

Ar+ ions, initially at 5 keV followed by final milling at 1 keV. TEM data were obtained using a JEOL 

JEM F200 transmission electron microscope operating at 200 kV. 

2.3.Characterization of Mechanical Properties 

The mechanical properties of the conventionally extruded (Ex) and extrusion-consolidated ribbon 

(RS+Ex) alloys were evaluated by tensile testing according to ASTM E8-04 specification [17]. Tensile 

specimens with their long axis along the extrusion direction were machined from the extruded billets with 

a gage length of 12 mm and diameter of 4 mm. Tensile testing on the extruded rods was performed at an 

initial strain rate of 1.8×10-3s-1. Compression tests were carried out at a strain rate of 1.8×10−3 s−1 on 

cylindrical specimens with diameter of 6 mm and height of 12 mm according to ASTM E9-09 

specification [18]. The tensile and compression tests were carried out in triplicate for each condition. 

2.4.Degradation Behavior 

The corrosion behavior of the Ex and RS+Ex alloys was studied in Hanks’ balanced salt solution (HBSS) 

supplemented with 0.35g NaHCO3/L. The pH of the solution was adjusted to 7.4 using 1 M NaOH or 

HCl. Open-circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and potentiodynamic 

polarization tests were carried out to study the corrosion behavior of the alloys. The potentiodynamic test 

was performed using a conventional three-electrode cell with a platinum counter-electrode of 1 cm2 in 

surface area, a saturated calomel reference electrode, and the prepared Mg-based working electrode. A 

scan rate of 0.166 mV/s, with an applied potential range of 1 V was used. The experiments were carried 

out in an aerated environment at 37 ± 1°C. The electrodes were connected to a potentiostat and monitored 

using VersaStudio® software. For static immersion tests, alloy discs with 0.6 cm2 exposed surface area 

were immersed for 7 days in Hanks’ solution. Prior to immersion, the specimens were degreased 

ultrasonically in acetone for 5 min then dried. The whole volume of solution was changed every 2 days to 

keep the pH value close to 7.4. The containers were stored in a controlled temperature (T = 37 ± 1°C). 

The immersion tests were performed to evaluate the degradation progress and uniformity. 



3. Results and Discussion 

3.1.Microstructural Characterization 

Figure 1 shows the microstructure of the as-cast Mg-2.0Zn-0.5Ca-0.4Mn alloy. The as-cast microstructure 

consisted of equiaxial α-Mg grains (average size about 50 µm) and secondary phases appearing in the 

form of fine spherical particles within the grain interiors and strips distributed at grain boundaries. 

Energy-dispersive spectroscopy (EDS) elemental maps (Fig. 1b) obtained from the area shown in the 

inset of Fig. 1a clearly revealed that the secondary phases were composed of Zn and Ca. As mentioned in 

the “Introduction”, Ca2Mg6Zn3 intermetallic forms in Mg-Zn-Ca alloys when the Zn/Ca atomic ratio 

exceeds 1.2 [12]. Hence, the secondary phase particles in the cast alloy are Ca2Mg6Zn3. Mn was not 

detected in the EDS elemental maps as its content (0.4 wt.%) is below the detection limit of EDS in 

conventional SEM. According to the equilibrium Mg-Mn phase diagram, Mn does not react with Mg 

[19], thus, the trace addition of Mn in the Mg-Zn-Ca alloys remains in the form of pure α-Mn particles in 

the microstructure [20]. 

 

Fig. 1. (a) Backscattered SEM micrograph of as-cast material and (b) corresponding EDS elemental map in 

region displayed in inset. 
 

Figure 2a presents a backscattered SEM image of the rapidly solidified (RS) ribbon cross section. The 

cross-sectional microstructure consisted of two distinct regions, marked by “A” and “B” in Fig. 2a. 

Region A, which was next to the wheel surface, had a thickness of ~3 μm and featured equiaxial fine grain 

structure with an average size of ~1.1 μm. Such remarkably fine grain structure is due to the high cooling 
rate at the Cu wheel surface. In the second region marked by “B” in Fig. 2a, the grains gradually evolved 

into columnar structure and extended to the free surface along the thermal gradient direction, which was 

nearly perpendicular to the wheel contact surface. Furthermore, Fig. 2a shows that the melt spun ribbon, 

alongside considerably refined grains, featured a microstructure without any secondary phases, implying 

that all the alloying elements were trapped in the Mg matrix. The presence of nanosized moiré fringes in 

the high-resolution TEM image of this alloy (e.g. Fig. 2b) indicates the presence of local strain inside the 

Mg grains. This means that the concentration of the elements varies within the alloy’s grains due to local 
supersaturation of alloying elements in Mg. The highlighted areas could serve as nucleation sites for 

dynamic precipitation during subsequent thermomechanical processing. 



 

Fig. 2. (a) SEM and (b) high resolution TEM micrographs of RS ribbon alloy. 
 

Figure 3a and b shows the microstructure of the Mg-2.0Zn-0.5Ca-0.4Mn alloy ingot after conventional 

extrusion (Ex) processing at two different magnifications. These micrographs show that extrusion resulted 

in the formation of a bimodal microstructure in the Mg-2.0Zn-0.5Ca-0.4Mn alloy with large deformed 

grains surrounded by extremely fine dynamically recrystallized (DRXed) grains with an average size of 

about 0.9 µm. Relatively coarse strings of Ca2Mg6Zn3 particles in the range of 10 µm to 50 µm were 

heterogeneously distributed along the extrusion direction (white stringers in Fig. 2a). Figure 2b shows 

that DRXed grains nucleated in the vicinity of preexisting grain boundaries and on the deformation twins 

via grain boundary and twin-induced nucleation mechanisms, respectively. 

Figure 3c and d displays the microstructure of the RS+Ex alloy. It can be seen that the melt-spun ribbons 

were perfectly bonded during extrusion: i.e. Ex resulted in full compaction of the RS ribbons without any 

evident porosities/voids. Indeed, the combined action of heat and compaction during hot extrusion led to 

the achievement of full densification of the melt-spun alloy ribbons. Moreover, interestingly, Fig. 3a and 

b reveals that the RS+Ex processed alloy featured a fully recrystallized equiaxial fine-grained structure 

with a size of ~4 µm. Indeed, no preferential elongation of the grains (deformed grains) could be seen in 

the RS+Ex alloy, which can be ascribed to the well distributed solute atoms in the matrix, promoting 

DRX uniformly throughout the matrix. Note that no fine and fully recrystallized microstructure for the 

Mg-Zn-Ca-based alloy system has been reported in literature so far. In addition to a fine and 

homogeneous grain structure, Fig. 3d indicates that the course Ca2Mg6Zn3 particles observed in the Ex 

alloy were replaced with remarkably fine thermomechanically-induced precipitates with size below 1 µm 

(marked by white arrows). Such an engineered microstructure lacking coarse secondary phases has not 

been reported in Mg-Zn-Ca-based alloys and results in unprecedented mechanical and corrosion 

properties as discussed below. 



 

Fig. 3. Microstructures of alloy processed by (a, b) Ex and (c, d) RS+Ex. 
 

Figure 4 shows bright-field scanning TEM (STEM) images as well as EDX elemental maps obtained 

from the DRXed area of the Ex alloy. Alongside the Ca2Mg6Zn3 stringers observed in the Ex alloy (Fig. 

3a and b), a large number of remarkably fine precipitates with nearly spherical morphology ranging from 

50 nm to 100 nm formed through dynamic precipitation inside the grains and at grain boundaries (marked 

by white arrows in Fig. 4a). These intergranular precipitates can pin grain boundaries and hinder grain 

growth during hot extrusion. The EDS elemental map analysis confirmed that these precipitates are 

Ca2Mg6Zn3 particles. Dynamic precipitation of Ca2Mg6Zn3 phase has been previously reported in the Mg-

Zn-Ca alloy system during hot deformation processes [11]. Figure 4b shows that in addition to the 

formation of strain-induced Ca2Mg6Zn3 precipitates, extremely fine particles (indicated by red arrows) 

with size below 10 nm were dispersed within the grain interiors. These particles in some areas act as 

preferential nucleation sites for dynamic precipitation of Ca2Mg6Zn3. EDS analysis demonstrated that 

these particles were pure Mn. Additionally, segregation of Ca and Zn atoms at grain boundaries can be 

clearly seen in Fig. 4b. Such co-segregation of Ca and Zn solutes to grain boundaries has been reported to 

exert a dragging effect on grain boundary mobility by reducing the grain boundary energy, thereby, 

hindering the growth of recrystallized grains during the hot extrusion process [21]. 



 

Fig. 4. Bright-field STEM images at (a) low and (b) high magnifications and corresponding EDX elemental maps 

obtain from Ex alloy. 
 

For the alloy experiencing RS+Ex processing, the size and volume fraction of the thermomechanically-

induced precipitates were smaller (Fig. 5a and b) than those in the Ex alloy. In the EDX elemental maps 

obtained from the RS+Ex alloy (Fig. 5), two types of precipitates were observed, one type containing Mg, 

Zn and Ca, i.e. Ca2Mg6Zn3 (e.g. particles marked by circles in Fig. 5a), and another type containing Mg 

and Ca, i.e. Mg2Ca (e.g. particles marked by squares in Fig. 5a). The EDX maps in Fig. 5 show that the 

intergranular precipitates were Ca2Mg6Zn3 phase while the uniformly dispersed intragranular precipitates 

were Mg2Ca phase in the RS+Ex alloy. Note that for this alloy composition (Mg-2Zn-0.5Ca-0.4Mn) 

Mg2Ca phase is not thermodynamically favorable. However, we hypothesize that during Ex processing, 

the nanosized regions supersaturated in alloying elements observed in the RS alloy (Fig. 2b) transformed 

into refined spherical Mg2Ca precipitates with a wide range of sizes from 10 nm to 100 nm. As the 

diffusivity of Ca in α-Mg is significantly higher than that of Zn [22], formation of Mg2Ca could occur 

prior to Ca2Mg6Zn3. Surprisingly, Fig. 5a reveals that the large amount of Zn alloying element remained 

trapped in the Mg matrix, emphasizing that the RS+Ex alloy is strongly vulnerable to age hardening. This 

could increase the fraction of nanosized Zn-rich precipitates and thus result in further improvement of 

mechanical properties. In other words, the mechanical properties of the RS+Ex alloy could be tuned to a 

large extent by engineering the fraction of precipitates via post age hardening. Similar to the Ex alloy, Mn 

was found in the form of markedly small particles within α-Mg grains, stimulating the nucleation of the 

second phases (Fig. 5b).  



 

Fig. 5. Bright-field STEM images at (a) low and (b) high magnification and corresponding EDX elemental maps 

for RS+Ex alloy 
 

3.2.Texture Analysis 

Figure 5 depicts the results of macro-texture analysis on longitudinal sections of the Ex and RS+Ex 

alloys. The Ex alloy showed a rather weak basal texture with a maximum texture intensity of 6.6, where 

the basal planes were slightly tilted toward the transversal direction (TD), although the major texture 

component still exhibited the basal planes parallel to the extrusion direction (ED) (Fig. 5a). This is a 

typical texture of Mg-Zn-Ca alloys being similar to those of REE-containing alloys [23]. Interestingly, 

Fig. 6b shows that when the alloy was subjected to RS+Ex, a large number of basal planes were rotated 

about the normal direction (ND) toward the TD, developing a markedly weaker texture with a large 

distribution of basal planes. Zeng et al. [21] reported that DRXed grains exhibit weak basal texture in Mg-

Zn-Ca alloys due to the Ca and Zn solute dragging effects on grain boundaries, which prevent grain 

growth on DRXed nuclei with preferential orientation, while the deformed grains are strongly textured. It 

is therefore suggested that in RS+Ex alloy due to the occurrence of complete recrystallization no strongly 

textured grains remained, thus, the overall texture was drastically weak. Indeed, the application of RS+Ex 

processing boosted the texture-randomizing effect and thereby, significantly decreased the texture 

intensity of the alloy from 6.6 to 3.5. The mechanical properties of Mg alloys are strongly dictated by 

their texture as it impacts on the activity of different deformation modes [16, 24]. Room temperature 

deformation of Mg alloys is mainly dominated by (0002) <112̅0 > basal slip since its critical resolved 

shear stress (CRSS) is far below those of the non-basal slip systems [25]. The newly developed texture in 

the RS+Ex alloy, due to the large distribution of grains having c-axis rotated toward TD and ED, provides 



a high value of basal slip Schmid factor and thereby, significantly enhances the activity of basal slip 

during tension when the load is applied parallel to the ED [26, 27].  

 

Fig. 6. (0002) pole figures for Ex and RS+Ex alloys. 

 

3.3.Mechanical properties 

The tensile and compressive stress versus strain curves for the Ex and RS+Ex alloys are presented in Fig. 

7a and b. The 0.2% proof stress in tension (TYS) and compression (CYS), ultimate tensile strength 

(UTS), tensile fracture elongation (A) and yielding asymmetric ratio (represented by the ratio of tensile to 

compression yield strength) derived from Fig. 7 are summarized in Table I. In comparison with the 

RS+Ex alloy, the Ex alloy exhibited higher TYS (~40 MPa) and UTS (~10 MPa) but much lower fracture 

elongation (~4%). The higher strength of the Ex alloy is related to its bimodal microstructure which 

promotes various strengthening mechanisms. As shown in Fig. 4a and b, the Ex alloy consisted of 

submicron DRXed grains along with a large number of deformed grains (high density of dislocations), 

which boost the grain boundary strengthening and strain hardening mechanisms, respectively. Moreover, 

since the tensile direction is parallel to the ED, the unidirectional distribution of the Ca2Mg6Zn3 strips 

contributes to the improvement of the tensile strength of this alloy. Eventually, the presence of these 

dynamically precipitated Ca2Mg6Zn3 particles in the DRXed regions enhances the mechanical strength 

through promotion of the precipitation hardening mechanism. However, this alloy exhibited lower 

elongation due to its inhomogeneous microstructure (Fig. 3a and b) containing a large number of 

unDRXed grains (i.e. deformed grains) with high dislocation density which minimize the accommodation 

of large deformation. Moreover, previous studies have demonstrated that such deformed grains exhibit a 

very strong basal texture, which decreases the activity of basal slip during tensile deformation [11]. 

As presented in Fig. 6, RS+Ex processing created a markedly weak basal texture with a large angular 

distribution of basal planes toward TD and noticeable spread toward ED, resulting in an improvement of 

the basal Schmid factor value during tensile deformation. Higher activity of the dominant (0002) basal 

slip implies easier dislocation slip on the basal planes, which lowers the stress required for yielding 

during tensile deformation. Moreover, a large amount of deformation could be accommodated by 

increasing the activity of the basal slip, leading to a significant improvement of the fracture elongation 

(from 4% for the Ex alloy to 19% for the RS+Ex alloy). Note that, although the size of the DRXed grains 

in the Ex alloy was smaller than that in the RS+Ex one, its overall grain size (including DRXed and 

unDRXed grains) is considerably larger. Therefore, according to the Hall-Petch relationship, the RS+Ex 

alloy should exhibit higher TYS than the Ex alloy. However, the favorable basal texture orientation for 

the RS+Ex alloy counterbalances the grain refinement strengthening. Furthermore, for the RS+Ex alloy 

with the randomized texture, the number of mobile dislocations increases due to the facile basal 



dislocation slip, thus, the accumulation of dislocations during plastic deformation leads to enhanced work 

hardening (Fig. 7a). 

  

Fig. 7. (a) Tensile and (b) compressive stress-strain curves of Ex and RS+Ex alloys. 

 

For the RS+Ex alloy, the thermomechanically-induced nanosized intergranular (Ca2Mg6Zn3) and 

intragranular (Mg2Ca) precipitates (Fig. 4) could effectively hinder dislocation movements during tensile 

deformation and result in an improved tensile strength of 294 MPa although this value is slightly lower 

than that measured for the Ex alloy (309 MPa). It should be emphasized that the RS+Ex alloy exhibited 

the best combination of strength, ductility and work hardening. 

Table I. Tensile and compressive characteristics for Ex and RS+Ex alloys. 

Material YS (MPa) 
UTS 

(MPa) 

Young’s 
Modulus 

(GPa) 

A (%) 
CYS 

(MPa) 

UCS 

(MPa) 
R 

Ex 276 ± 6 309 ± 7 43 ± 1 4 ± 1 171 ± 5 429 ± 3 1.61 

RS+Ex 237 ± 3 294 ± 7 42 ± 1 19 ± 3 190 ± 7 426 ± 5 1.25 

 

In compression, however, the RS+Ex alloy showed higher CYS than its Ex counterpart (190 MPa versus 

171 MPa). This is attributed to the considerably weak basal texture of the RS+Ex alloy, which reduces the 

activation of {101̅2}  <101̅1> extension twining. It is well established that extension twining becomes 

activated when the compression load axis is parallel to the basal planes [28]. However, in the RS+Ex 

alloy, as shown in Fig. 6b, unlike the Ex alloy, due to the texture randomization, basal planes were rotated 

away from the ideal alignment for twinning activation which enhances the CRSS for twinning and 

thereby, suppresses the activation of extension twining [29]. Accordingly, texture modification is 

responsible for the enhanced CYS in the RS+Ex alloy. On the other hand, for the Ex alloy since the 

majority of the grains have texture favorable for generation of extension twining (Fig. 6a), the 

deformation is accommodated by dislocation slip and twinning, which results in lower CYS. In the Mg 

alloys, during compression testing, the twining-dominated plastic deformation was characterized by a 

concave-up stress-strain curve [30]. Figure 7b clearly shows that this feature is more distinct for the Ex 

alloy, confirming the lower twining activity in the RS+Ex alloy during compression. The low value of 

CYS led to a considerably high yielding asymmetric ratio of about 1.61 for the Ex alloy. The occurrence 

of tension-compression yield asymmetry is caused by easier plastic deformation via twinning during 

0.0 0.1 0.2 0.3
0

100

200

300

400

S
tr

e
s
s
 (

M
P

a
)

Strain (%)

 Ex

 RS+Ex
b

0.0 0.1 0.2 0.3
0

100

200

300

400

S
tr

e
s
s
 (

M
P

a
)

Strain (%)

 Ex

 RS+Ex

a



compression than tension where slip is the dominant deformation mechanism. However, for the RS+Ex 

alloy, due to the suppression of deformation twinning resulting from the texture randomization, the 

aforementioned ratio decreased significantly to 1.25.  

Tension–compression yield asymmetry restricts the use of Mg alloys as biomedical implants which are 

simultaneously subjected to tension and compression stresses (e.g. in bending or in axial tension–
compression cycles). Accordingly, the more symmetric mechanical behavior of the RS+Ex alloy makes it 

a promising candidate for biodegradable implant applications.  

In brief, a combination of dynamic precipitation of nanosized particles, grain refinement, and texture 

randomization was responsible for the concurrently improved strength and ductility as well as yield 

asymmetry alleviation in the RS+Ex alloy. In particular, the improved tensile strength is due to grain 

boundary strengthening and precipitation hardening, while the texture randomization is responsible for 

the high elongation and reduced yielding asymmetry.   

3.4.Degradation Behavior 

Potentiodynamic polarization testing was performed to determine the aspects that dictate the degradation 

rates of the Ex and RS+Ex alloys as it provides information regarding the anodic and cathodic reaction 

rates sustained by the investigated materials. Inspection of Fig. 8a reveals that the anodic kinetics of the 

RS+Ex alloy was significantly reduced relative to that of the conventionally processed counterpart. 

Indeed, the degradation rates for the RS+Ex samples calculated based on the current density and static 

immersion tests were obviously lower (0.37 mm/year and 0.12 mm/year, respectively) when compared 

with those for the Ex alloy (2.49 mm/year and 0.39 mm/year, respectively). Figure 8b shows the OCP 

time dependence for the Ex and RS+Ex samples. A sharp increase in the OCP could be observed in the 

first 72h of the degradation process for both the Ex and RS+Ex samples although the rate of increase 

varied. The rise in the OCP is attributed to the formation of degradation products with protective 

properties over time. However, a drop in the OCP was observed after 72h only for the Ex alloy. This 

reduction in the OCP could be due to the rupture of the protective layer and, as a consequence, localized 

corrosive attack.  

The degradation behavior was further validated by EIS carried out regularly during continuous immersion 

in HBSS as a function of time. Nyquist and Bode diagrams obtained from both the Ex and RS+Ex alloys 

after various exposure times (1h, 24h, 72h, and 168h) are displayed in Fig. 8 c-e. The presence of 

capacitive loops at high/medium frequencies and an inductive loop at low frequencies in the Nyquist plots 

(Fig. 8c and e) indicates that different interfacial mechanisms are involved in the degradation process of 

the samples. The capacitive loop at high frequencies is associated with charge transfer and 

electrochemical double-layer/oxide-film effects while the capacitive loop at medium frequencies is 

associated with mass transport relaxation due to diffusion of Mg2+ ions through the degradation product 

layer [31]. The inductive loop at low frequencies observed only for the Ex alloys (Fig. 8c) is attributed to 

relaxation of coverage due to adsorption of Mg+ intermediates [32]. Comparing the Bode plots obtained 

from the alloys (Fig. 8d versus f), both the impedance and phase angle curves for the non-conventionally 

processed alloy showed a shift to lower frequency indicating a lower corrosion susceptibility for the 

RS+Ex sample. Furthermore, the impedance data reveal a large increase in the impedance of the RS+Ex 

sample after 168 h of exposure (from ~4000 Ω·cm2 at 1h to ~15000 Ω·cm2 at 168 h, Fig. 8f). However, 

for the Ex sample although there was an increase in the impedance in the early stage of the degradation 

process (for the first 24h), the impedance finally dropped to ~100 Ω·cm2 after 168 h. The early rise in the 

corrosion resistance of both samples is caused by protective film formation due to the initial fast 

degradation rate leading to an increase in the local concentration of the Mg2+ and OH– ions. The drop in 

the corrosion resistance of the Ex sample in the late stages could be due to severe localized corrosion 



(arising from micro-galvanic coupling between the Mg matrix and cathodic secondary phases). The 

presence of localized corroded regions on the extruded alloy surface (Fig. 9a) confirms this suggestion 

regarding the occurrence of localized corrosion due to micro-galvanic coupling between the Mg matrix 

and cathodic secondary phases in this sample. Conversely, the RS+Ex alloy demonstrated a remarkably 

uniform degradation mode which can be attributed to its microstructural homogeneity (Fig. 9b), the 

absence of cathodic Ca2Mg6Zn3 particles larger than 50 nm as well as their reduced fraction, and Mg 

matrix ennoblement (due to α-Mg saturation in Zn). Indeed, the low availability of hydrogen discharging 

cathodic sites on the surface of the RS+Ex alloy contributes to the lower exchange current density for 

hydrogen reduction on the homogenously oxidized surface [33]. In contrast, numerous, often large 

Ca2Mg6Zn3 intermetallics exhibiting elevated cathodic activity in physiological conditions provoke severe 

deterioration of the Ex alloys’ overall corrosion resistance and thus are the cause of drastic localized 
corrosion via microgalvanic coupling [34]. The rupture of the protective film on the extruded sample is 

evidenced by an increase in the low frequency inductive loop in Fig 8c. Protective layer dissolution and 

lateral pit growth are accompanied by increased electrolyte access to the interface of the conventionally 

processed sample leading to the reduction of the protective properties due to pit growth; this is evidenced 

by the decrease in the size of the high frequency loop after longer immersion times (Fig. 8c). 
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Fig. 8. (a) Potentiodynamic polarization curves and (b) OCP evolution for EX and RS+EX alloys. (c, e) Nyquist and 

(d, f) Bode plots for (c, d) Ex and (e, f) RS+EX samples after 1h, 24h, 72h and 168h of immersion in HBSS. 

 

Fig. 9. Cross-sectional morphologies of degraded (a) Ex and (b) RS+Ex alloys. 

 

4. Conclusions 

A combination of rapid solidification and hot extrusion was exploited as a novel fabrication method to 

produce Mg-2.0Zn-0.5Ca-0.4Mn alloy with improved mechanical and corrosion properties through 

microstructural manipulation. Based on the results obtained, the following conclusions can be drawn: 

 Rapidly solidified melt spun ribbons featured a single-phase structure in which all the alloying 

elements were trapped in the Mg matrix. The rapid solidification process caused the formation of 

nanosized regions supersaturated in the alloying elements in Mg which served as preferential 

nucleation sites for dynamic precipitation during the subsequent hot extrusion. 

 Melt spun ribbons were successfully consolidated to a porosity-free bulk material via hot 

extrusion. The alloy ribbons consolidated by extrusion featured a fully recrystallized fine-grained 

structure with a size of ~4 µm. Moreover, application of RS+Ex suppressed the formation of 

coarse secondary phases and resulted in thermomechanically-induced nanosized precipitates, in 

the range of 10 nm to 100 nm, while a large amount of Zn remained dissolved in Mg.  

 RS+Ex generated a random basal texture with a markedly reduced maximum intensity of 3.5, 

with the majority of basal planes rotated toward transverse and extrusion direction. This weak 

texture led to an increase in the basal slip Schmid factor and thereby significantly enhanced the 

activity of basal slip during tension when the load was applied parallel to the ED. 

 The RS+Ex alloy exhibited enhanced tensile strength and fracture elongation of 294 MPa and 19 

%, respectively, as well as reduced tension-compression yielding asymmetry (1.25). It was found 

that the improved strength could be attributed to promotion of the grain boundary strengthening 

and precipitation hardening mechanisms. However, texture weakening was responsible for high 

fracture elongation and reduced yielding asymmetry. In particular, the RS+Ex-induced texture 

was favorable for basal dislocation slip when the alloy was subjected to tension, resulting in 

larger accommodation of deformation by basal slip, while suppression of deformation twining 

during compression reduced the yielding asymmetry. 

 The corrosion mode of the alloy varied with the microstructural features induced by the 

processing method. A more uniform corrosion pattern with a reduced rate was found for the 

RS+Ex alloy, replacing the predominant localized corrosion evident in the Ex alloy. Indeed, 

application of RS+Ex processing markedly decreased the corrosion rate from 2.5 mm/year to 0.4 

mm/year mainly due to second phase refinement and microstructural homogenization. 



The origin of the combined strengthening and enhanced corrosion resistance in the obtained alloy can be 

explained by the effective engineering of the solute nanostructures through careful control of the alloy 

chemistry and optimization of the thermal and mechanical processing route. This work provides a 

platform for further modification or control over the property profile of Mg–Zn-Ca-Mn alloys prepared 

through non-equilibrium processing methods and demonstrates the possibility of producing lightweight, 

high-strength and corrosion resistant alloys for potential use in diverse applications including as 

biodegradable implant materials. 
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