316 research outputs found

    Arctic octahedron in three-dimensional rhombus tilings and related integer solid partitions

    Full text link
    Three-dimensional integer partitions provide a convenient representation of codimension-one three-dimensional random rhombus tilings. Calculating the entropy for such a model is a notoriously difficult problem. We apply transition matrix Monte Carlo simulations to evaluate their entropy with high precision. We consider both free- and fixed-boundary tilings. Our results suggest that the ratio of free- and fixed-boundary entropies is σfree/σfixed=3/2\sigma_{free}/\sigma_{fixed}=3/2, and can be interpreted as the ratio of the volumes of two simple, nested, polyhedra. This finding supports a conjecture by Linde, Moore and Nordahl concerning the ``arctic octahedron phenomenon'' in three-dimensional random tilings

    Two-dimensional random tilings of large codimension: new progress

    Full text link
    Two-dimensional random tilings of rhombi can be seen as projections of two-dimensional membranes embedded in hypercubic lattices of higher dimensional spaces. Here, we consider tilings projected from a DD-dimensional space. We study the limiting case, when the quantity DD, and therefore the number of different species of tiles, become large. We had previously demonstrated [ICQ6] that, in this limit, the thermodynamic properties of the tiling become independent of the boundary conditions. The exact value of the limiting entropy and finite DD corrections remain open questions. Here, we develop a mean-field theory, which uses an iterative description of the tilings based on an analogy with avoiding oriented walks on a random tiling. We compare the quantities so-obtained with numerical calculations. We also discuss the role of spatial correlations.Comment: Proceedings of the 7th International Conference on Quasicrystals (ICQ7, Stuttgart), 4 pages, 4 figure

    Adiabatic Computation - A Toy Model

    Get PDF
    We discuss a toy model for adiabatic quantum computation which displays some phenomenological properties expected in more realistic implementations. This model has two free parameters: the adiabatic evolution parameter ss and the α\alpha parameter which emulates many-variables constrains in the classical computational problem. The proposed model presents, in the s−αs-\alpha plane, a line of first order quantum phase transition that ends at a second order point. The relation between computation complexity and the occurrence of quantum phase transitions is discussed. We analyze the behavior of the ground and first excited states near the quantum phase transition, the gap and the entanglement content of the ground state.Comment: 7 pages, 8 figure

    Phase diagram of an extended quantum dimer model on the hexagonal lattice

    Get PDF
    We introduce a quantum dimer model on the hexagonal lattice that, in addition to the standard three-dimer kinetic and potential terms, includes a competing potential part counting dimer-free hexagons. The zero-temperature phase diagram is studied by means of quantum Monte Carlo simulations, supplemented by variational arguments. It reveals some new crystalline phases and a cascade of transitions with rapidly changing flux (tilt in the height language). We analyze perturbatively the vicinity of the Rokhsar-Kivelson point, showing that this model has the microscopic ingredients needed for the "devil's staircase" scenario [E. Fradkin et al., Phys. Rev. B 69, 224415 (2004)], and is therefore expected to produce fractal variations of the ground-state flux.Comment: Published version. 5 pages + 8 (Supplemental Material), 31 references, 10 color figure

    Generalized quasiperiodic Rauzy tilings

    Full text link
    We present a geometrical description of new canonical dd-dimensional codimension one quasiperiodic tilings based on generalized Fibonacci sequences. These tilings are made up of rhombi in 2d and rhombohedra in 3d as the usual Penrose and icosahedral tilings. Thanks to a natural indexing of the sites according to their local environment, we easily write down, for any approximant, the sites coordinates, the connectivity matrix and we compute the structure factor.Comment: 11 pages, 3 EPS figures, final version with minor change

    Geometrical approach to SU(2) navigation with Fibonacci anyons

    Full text link
    Topological quantum computation with Fibonacci anyons relies on the possibility of efficiently generating unitary transformations upon pseudoparticles braiding. The crucial fact that such set of braids has a dense image in the unitary operations space is well known; in addition, the Solovay-Kitaev algorithm allows to approach a given unitary operation to any desired accuracy. In this paper, the latter task is fulfilled with an alternative method, in the SU(2) case, based on a generalization of the geodesic dome construction to higher dimension.Comment: 12 pages, 5 figure

    Entanglement in a first order quantum phase transition

    Full text link
    The phase diagram of spins 1/2 embedded in a magnetic field mutually interacting antiferromagnetically is determined. Contrary to the ferromagnetic case where a second order quantum phase transition occurs, a first order transition is obtained at zero field. The spectrum is computed for a large number of spins and allows one to study the ground state entanglement properties which displays a jump of its concurrence at the critical point.Comment: 4 pages, 3 EPS figure

    Topological phase for entangled two-qubit states and the representation of the SO(3)group

    Full text link
    We discuss the representation of the SO(3)SO(3) group by two-qubit maximally entangled states (MES). We analyze the correspondence between SO(3)SO(3) and the set of two-qubit MES which are experimentally realizable. As a result, we offer a new interpretation of some recently proposed experiments based on MES. Employing the tools of quantum optics we treat in terms of two-qubit MES some classical experiments in neutron interferometry, which showed the π\pi -phase accrued by a spin-1/21/2 particle precessing in a magnetic field. By so doing, we can analyze the extent to which the recently proposed experiments - and future ones of the same sort - would involve essentially new physical aspects as compared with those performed in the past. We argue that the proposed experiments do extend the possibilities for displaying the double connectedness of SO(3)SO(3), although for that to be the case it results necessary to map elements of SU(2)SU(2) onto physical operations acting on two-level systems.Comment: 25 pages, 9 figure

    A remark on the trace-map for the Silver mean sequence

    Full text link
    In this work we study the Silver mean sequence based on substitution rules by means of a transfer-matrix approach. Using transfer-matrix method we find a recurrence relation for the traces of general transfer-matrices which characterizes electronic properties of the quasicrystal in question. We also find an invariant of the trace-map.Comment: 5 pages, minor improvements in style and presentation of calculation
    • 

    corecore