12 research outputs found

    Nanotheranostics: A Possible Solution for Drug-Resistant Staphylococcus aureus and their Biofilms?

    Get PDF
    Staphylococcus aureus is a notorious pathogen that colonizes implants (orthopedic and breast implants) and wounds with a vicious resistance to antibiotic therapy. Methicillin-resistant S. aureus (MRSA) is a catastrophe mainly restricted to hospitals and emerged to community reservoirs, acquiring resistance and forming biofilms. Treating biofilms is problematic except via implant removal or wound debridement. Nanoparticles (NPs) and nanofibers could combat superbugs and biofilms and rapidly diagnose MRSA. Nanotheranostics combine diagnostics and therapeutics into a single agent. This comprehensive review is interpretative, utilizing mainly recent literature (since 2016) besides the older remarkable studies sourced via Google Scholar and PubMed. We unravel the molecular S. aureus resistance and complex biofilm. The diagnostic properties and detailed antibacterial and antibiofilm NP mechanisms are elucidated in exciting stories. We highlight the challenges of bacterial infections nanotheranostics. Finally, we discuss the literature and provide “three action appraisals”. (i) The first appraisal consists of preventive actions (two wings), avoiding unnecessary hospital visits, hand hygiene, and legislations against over-the-counter antibiotics as the general preventive wing. Our second recommended preventive wing includes preventing the adverse side effects of the NPs from resistance and toxicity by establishing standard testing procedures. These standard procedures should provide breakpoints of bacteria’s susceptibility to NPs and a thorough toxicological examination of every single batch of synthesized NPs. (ii) The second appraisal includes theranostic actions, using nanotheranostics to diagnose and treat MRSA, such as what we call “multifunctional theranostic nanofibers. (iii) The third action appraisal consists of collaborative actions

    Nanotheranostics: A Possible Solution for Drug-Resistant Staphylococcus aureus and their Biofilms?

    Get PDF
    Staphylococcus aureus is a notorious pathogen that colonizes implants (orthopedic and breast implants) and wounds with a vicious resistance to antibiotic therapy. Methicillin-resistant S. aureus (MRSA) is a catastrophe mainly restricted to hospitals and emerged to community reservoirs, acquiring resistance and forming biofilms. Treating biofilms is problematic except via implant removal or wound debridement. Nanoparticles (NPs) and nanofibers could combat superbugs and biofilms and rapidly diagnose MRSA. Nanotheranostics combine diagnostics and therapeutics into a single agent. This comprehensive review is interpretative, utilizing mainly recent literature (since 2016) besides the older remarkable studies sourced via Google Scholar and PubMed. We unravel the molecular S. aureus resistance and complex biofilm. The diagnostic properties and detailed antibacterial and antibiofilm NP mechanisms are elucidated in exciting stories. We highlight the challenges of bacterial infections nanotheranostics. Finally, we discuss the literature and provide “three action appraisals”. (i) The first appraisal consists of preventive actions (two wings), avoiding unnecessary hospital visits, hand hygiene, and legislations against over-the-counter antibiotics as the general preventive wing. Our second recommended preventive wing includes preventing the adverse side effects of the NPs from resistance and toxicity by establishing standard testing procedures. These standard procedures should provide breakpoints of bacteria’s susceptibility to NPs and a thorough toxicological examination of every single batch of synthesized NPs. (ii) The second appraisal includes theranostic actions, using nanotheranostics to diagnose and treat MRSA, such as what we call “multifunctional theranostic nanofibers. (iii) The third action appraisal consists of collaborative actions

    Nanosilver-Silica Composite : Prolonged Antibacterial Effects and Bacterial Interaction Mechanisms for Wound Dressings

    Get PDF
    Infected superficial wounds were traditionally controlled by topical antibiotics until the emergence of antibiotic-resistant bacteria. Silver (Ag) is a kernel for alternative antibacterial agents to fight this resistance quandary. The present study demonstrates a method for immobilizing small-sized (similar to 5 nm) silver nanoparticles on silica matrix to form a nanosilver-silica (Ag-SiO2) composite and shows the prolonged antibacterial effects of the composite in vitro. The composite exhibited a rapid initial Ag release after 24 h and a slower leaching after 48 and 72 h and was effective against both methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). Ultraviolet (UV)-irradiation was superior to filter-sterilization in retaining the antibacterial effects of the composite, through the higher remaining Ag concentration. A gauze, impregnated with the Ag-SiO2 composite, showed higher antibacterial effects against MRSA and E. coli than a commercial Ag-containing dressing, indicating a potential for the management and infection control of superficial wounds. Transmission and scanning transmission electron microscope analyses of the composite-treated MRSA revealed an interaction of the released silver ions with the bacterial cytoplasmic constituents, causing ultimately the loss of bacterial membranes. The present results indicate that the Ag-SiO2 composite, with prolonged antibacterial effects, is a promising candidate for wound dressing applications.Peer reviewe

    Inhibition of SARS-CoV-2 Alpha Variant and Murine Noroviruses on Copper-Silver Nanocomposite Surfaces

    Get PDF
    With the continued scenario of the COVID-19 pandemic, the world is still seeking out-of-the-box solutions to break its transmission cycle and contain the pandemic. There are different transmission routes for viruses, including indirect transmission via surfaces. To this end, we used two relevant viruses in our study. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the pandemic and human norovirus (HuNV), both known to be transmitted via surfaces. Several nanoformulations have shown attempts to inhibit SARS-CoV-2 and other viruses. However, a rigorous, similar inactivation scheme to inactivate the cords of two tedious viruses (SARS-CoV-2 Alpha variant and HuNV) is lacking. The present study demonstrates the inactivation of the SARS-CoV-2 Alpha variant and the decrease in the murine norovirus (MNV, a surrogate to HuNV) load after only one minute of contact to surfaces including copper–silver (Cu–Ag) nanocomposites. We thoroughly examined the physicochemical characteristics of such plated surfaces using diverse microscopy tools and found that Cu was the dominanting element in the tested three different surfaces (~56, ~59, and ~48 wt%, respectively), hence likely playing the major role of Alpha and MNV inactivation followed by the Ag content (~28, ~13, and ~11 wt%, respectively). These findings suggest that the administration of such surfaces within highly congested places (e.g., schools, public transportations, public toilets, and hospital and live-stock reservoirs) could break the SARS-CoV-2 and HuNV transmission. We suggest such an administration after an in-depth examination of the in vitro (especially on skin cells) and in vivo toxicity of the nanocomposite formulations and surfaces while also standardizing the physicochemical parameters, testing protocols, and animal models

    Evaluation of the anti-biofilm activities of bacterial cellulose-tannic acid-magnesium chloride composites using an in vitro multispecies biofilm model

    Get PDF
    Chronic wounds are a serious worldwide problem, which are often accompanied by wound infections. In this study, bacterial cellulose (BC)-based composites introduced with tannic acid (TA) and magnesium chloride (BC-TA-Mg) were fabricated for anti-biofilm activities. The prepared composites' surface properties, mechanical capacity, thermal stability, water absorption and retention property, releasing behavior, anti-biofilm activities and potential cytotoxicity were tested. Results showed that TA and MgCl2 particles closely adhered to the nanofibers of BC membranes, thus increasing surface roughness and hydrophobicity of the membranes. While the introduction of TA and MgCl2 did not influence the transparency of the membranes, making it beneficial for wound inspection. BC-TA and BC-TA-Mg composites displayed increased tensile strength and elongation at break compared to pure BC. Moreover, BC-TA-Mg exhibited higher water absorption and retention capacity than BC and BC-TA, suitable for the absorption of wound exudates. BC-TA-Mg demonstrated controlled release of TA and good inhibitory effect on both singly cultured Staphylococcus aureus and Pseudomonas aeruginosa biofilm and co-cultured biofilm of S. aureus and P. aeruginosa. Furthermore, the cytotoxicity grade of BC-TA-6Mg membrane was eligible based on standard toxicity classifications. These indicated that BC-TA-Mg is potential to be used as wound dressings combating biofilms in chronic wounds.Peer reviewe

    Inhibition of SARS-CoV-2 Alpha Variant and Murine Noroviruses on Copper-Silver Nanocomposite Surfaces

    Get PDF
    With the continued scenario of the COVID-19 pandemic, the world is still seeking out-of-the-box solutions to break its transmission cycle and contain the pandemic. There are different transmission routes for viruses, including indirect transmission via surfaces. To this end, we used two relevant viruses in our study. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the pandemic and human norovirus (HuNV), both known to be transmitted via surfaces. Several nanoformulations have shown attempts to inhibit SARS-CoV-2 and other viruses. However, a rigorous, similar inactivation scheme to inactivate the cords of two tedious viruses (SARS-CoV-2 Alpha variant and HuNV) is lacking. The present study demonstrates the inactivation of the SARS-CoV-2 Alpha variant and the decrease in the murine norovirus (MNV, a surrogate to HuNV) load after only one minute of contact to surfaces including copper–silver (Cu–Ag) nanocomposites. We thoroughly examined the physicochemical characteristics of such plated surfaces using diverse microscopy tools and found that Cu was the dominanting element in the tested three different surfaces (~56, ~59, and ~48 wt%, respectively), hence likely playing the major role of Alpha and MNV inactivation followed by the Ag content (~28, ~13, and ~11 wt%, respectively). These findings suggest that the administration of such surfaces within highly congested places (e.g., schools, public transportations, public toilets, and hospital and live-stock reservoirs) could break the SARS-CoV-2 and HuNV transmission. We suggest such an administration after an in-depth examination of the in vitro (especially on skin cells) and in vivo toxicity of the nanocomposite formulations and surfaces while also standardizing the physicochemical parameters, testing protocols, and animal models

    Inhibition of SARS-CoV-2 Alpha Variant and Murine Noroviruses on Copper-Silver Nanocomposite Surfaces

    Get PDF
    With the continued scenario of the COVID-19 pandemic, the world is still seeking out-of-the-box solutions to break its transmission cycle and contain the pandemic. There are different transmission routes for viruses, including indirect transmission via surfaces. To this end, we used two relevant viruses in our study. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the pandemic and human norovirus (HuNV), both known to be transmitted via surfaces. Several nanoformulations have shown attempts to inhibit SARS-CoV-2 and other viruses. However, a rigorous, similar inactivation scheme to inactivate the cords of two tedious viruses (SARS-CoV-2 Alpha variant and HuNV) is lacking. The present study demonstrates the inactivation of the SARS-CoV-2 Alpha variant and the decrease in the murine norovirus (MNV, a surrogate to HuNV) load after only one minute of contact to surfaces including copper-silver (Cu-Ag) nanocomposites. We thoroughly examined the physicochemical characteristics of such plated surfaces using diverse microscopy tools and found that Cu was the dominanting element in the tested three different surfaces (similar to 56, similar to 59, and similar to 48 wt%, respectively), hence likely playing the major role of Alpha and MNV inactivation followed by the Ag content (similar to 28, similar to 13, and similar to 11 wt%, respectively). These findings suggest that the administration of such surfaces within highly congested places (e.g., schools, public transportations, public toilets, and hospital and live-stock reservoirs) could break the SARS-CoV-2 and HuNV transmission. We suggest such an administration after an in-depth examination of the in vitro (especially on skin cells) and in vivo toxicity of the nanocomposite formulations and surfaces while also standardizing the physicochemical parameters, testing protocols, and animal models.Peer reviewe

    Silica-gentamicin nanohybrids : combating antibiotic resistance, bacterial biofilms, and in vivo toxicity

    Get PDF
    Introduction: Antibiotic resistance is a growing concern in health care. Methicillin-resistant Staphylococcus aureus (MRSA), forming biofilms, is a common cause of resistant orthopedic implant infections. Gentamicin is a crucial antibiotic preventing orthopedic infections. Silica-gentamicin (SiO2-G) delivery systems have attracted significant interest in preventing the formation of biofilms. However, compelling scientific evidence addressing their efficacy against planktonic MRSA and MRSA biofilms is still lacking, and their safety has not extensively been studied. Materials and methods: In this work, we have investigated the effects of SiO2-G nanohybrids against planktonic MRSA as well as MRSA and Escherichia coli biofilms and then evaluated their toxicity in zebrafish embryos, which are an excellent model for assessing the toxicity of nanotherapeutics. Results: SiO2-G nanohybrids inhibited the growth and killed planktonic MRSA at a minimum concentration of 500 mu g/mL. SiO2-G nanohybrids entirely eradicated E. coli cells in biofilms at a minimum concentration of 250 mu g/mL and utterly deformed their ultrastructure through the deterioration of bacterial shapes and wrinkling of their cell walls. Zebrafish embryos exposed to SiO2-G nanohybrids (500 and 1,000 mu g/mL) showed a nonsignificant increase in mortality rates, 13.4 +/- 9.4 and 15%+/- 7.1%, respectively, mainly detected 24 hours post fertilization (hpf). Frequencies of malformations were significantly different from the control group only 24 hpf at the higher exposure concentration. Conclusion: Collectively, this work provides the first comprehensive in vivo assessment of SiO2-G nanohybrids as a biocompatible drug delivery system and describes the efficacy of SiO2-G nanohybrids in combating planktonic MRSA cells and eradicating E. coli biofilms.Peer reviewe

    Nanotheranostics: A Possible Solution for Drug-Resistant Staphylococcus aureus and their Biofilms?

    No full text
    Staphylococcus aureus is a notorious pathogen that colonizes implants (orthopedic and breast implants) and wounds with a vicious resistance to antibiotic therapy. Methicillin-resistant S. aureus (MRSA) is a catastrophe mainly restricted to hospitals and emerged to community reservoirs, acquiring resistance and forming biofilms. Treating biofilms is problematic except via implant removal or wound debridement. Nanoparticles (NPs) and nanofibers could combat superbugs and biofilms and rapidly diagnose MRSA. Nanotheranostics combine diagnostics and therapeutics into a single agent. This comprehensive review is interpretative, utilizing mainly recent literature (since 2016) besides the older remarkable studies sourced via Google Scholar and PubMed. We unravel the molecular S. aureus resistance and complex biofilm. The diagnostic properties and detailed antibacterial and antibiofilm NP mechanisms are elucidated in exciting stories. We highlight the challenges of bacterial infections nanotheranostics. Finally, we discuss the literature and provide “three action appraisals”. (i) The first appraisal consists of preventive actions (two wings), avoiding unnecessary hospital visits, hand hygiene, and legislations against over-the-counter antibiotics as the general preventive wing. Our second recommended preventive wing includes preventing the adverse side effects of the NPs from resistance and toxicity by establishing standard testing procedures. These standard procedures should provide breakpoints of bacteria’s susceptibility to NPs and a thorough toxicological examination of every single batch of synthesized NPs. (ii) The second appraisal includes theranostic actions, using nanotheranostics to diagnose and treat MRSA, such as what we call “multifunctional theranostic nanofibers. (iii) The third action appraisal consists of collaborative actions
    corecore