212 research outputs found
Majority Dynamics and Aggregation of Information in Social Networks
Consider n individuals who, by popular vote, choose among q >= 2
alternatives, one of which is "better" than the others. Assume that each
individual votes independently at random, and that the probability of voting
for the better alternative is larger than the probability of voting for any
other. It follows from the law of large numbers that a plurality vote among the
n individuals would result in the correct outcome, with probability approaching
one exponentially quickly as n tends to infinity. Our interest in this paper is
in a variant of the process above where, after forming their initial opinions,
the voters update their decisions based on some interaction with their
neighbors in a social network. Our main example is "majority dynamics", in
which each voter adopts the most popular opinion among its friends. The
interaction repeats for some number of rounds and is then followed by a
population-wide plurality vote.
The question we tackle is that of "efficient aggregation of information": in
which cases is the better alternative chosen with probability approaching one
as n tends to infinity? Conversely, for which sequences of growing graphs does
aggregation fail, so that the wrong alternative gets chosen with probability
bounded away from zero? We construct a family of examples in which interaction
prevents efficient aggregation of information, and give a condition on the
social network which ensures that aggregation occurs. For the case of majority
dynamics we also investigate the question of unanimity in the limit. In
particular, if the voters' social network is an expander graph, we show that if
the initial population is sufficiently biased towards a particular alternative
then that alternative will eventually become the unanimous preference of the
entire population.Comment: 22 page
Heat resistance of Bacillus spores when adhered to stainless steel and its relationship to spore hydrophobicity
Twenty-one strains of Bacillus (10 B. stearothermophilus, 3 B. cereus, and 8 B. licheniformis strains) were assayed for spore surface hydrophobicity on the basis of three measures: contact angle measurement (CAM), microbial adhesion to hydrocarbons (MATH), and hydrophobic interaction chromatography (HIC). On the basis of the spore surface characteristics obtained from these assays, along with data on the heat resistance of these spores in water, eight strains of Bacillus (three B. stearothermophilus, three B. cereus, and two B. licheniformis strains) either suspended in water or adhering to stainless steel were exposed to sublethal heat treatments at 90 to 110degreesC to determine heat resistance (D-value). Significant increases in heat resistance (ranging from 3 to 400%) were observed for the eight strains adhering to stainless steel. No significant correlation was found between these heat resistance increases and spore surface characteristics as determined by the three hydrophobicity assays. There was a significant positive correlation between the hydrophobicity data obtained by the MATH assay and those obtained by the HIC assay, but these data did not correlate with those obtained by the CAM assay
Quantum Quench in the Transverse Field Ising chain I: Time evolution of order parameter correlators
We consider the time evolution of order parameter correlation functions after
a sudden quantum quench of the magnetic field in the transverse field Ising
chain. Using two novel methods based on determinants and form factor sums
respectively, we derive analytic expressions for the asymptotic behaviour of
one and two point correlators. We discuss quenches within the ordered and
disordered phases as well as quenches between the phases and to the quantum
critical point. We give detailed account of both methods.Comment: 65 pages, 21 figures, some typos correcte
Time Evolution within a Comoving Window: Scaling of signal fronts and magnetization plateaus after a local quench in quantum spin chains
We present a modification of Matrix Product State time evolution to simulate
the propagation of signal fronts on infinite one-dimensional systems. We
restrict the calculation to a window moving along with a signal, which by the
Lieb-Robinson bound is contained within a light cone. Signal fronts can be
studied unperturbed and with high precision for much longer times than on
finite systems. Entanglement inside the window is naturally small, greatly
lowering computational effort. We investigate the time evolution of the
transverse field Ising (TFI) model and of the S=1/2 XXZ antiferromagnet in
their symmetry broken phases after several different local quantum quenches.
In both models, we observe distinct magnetization plateaus at the signal
front for very large times, resembling those previously observed for the
particle density of tight binding (TB) fermions. We show that the normalized
difference to the magnetization of the ground state exhibits similar scaling
behaviour as the density of TB fermions. In the XXZ model there is an
additional internal structure of the signal front due to pairing, and wider
plateaus with tight binding scaling exponents for the normalized excess
magnetization. We also observe parameter dependent interaction effects between
individual plateaus, resulting in a slight spatial compression of the plateau
widths.
In the TFI model, we additionally find that for an initial Jordan-Wigner
domain wall state, the complete time evolution of the normalized excess
longitudinal magnetization agrees exactly with the particle density of TB
fermions.Comment: 10 pages with 5 figures. Appendix with 23 pages, 13 figures and 4
tables. Largely extended and improved versio
On RAF Sets and Autocatalytic Cycles in Random Reaction Networks
The emergence of autocatalytic sets of molecules seems to have played an
important role in the origin of life context. Although the possibility to
reproduce this emergence in laboratory has received considerable attention,
this is still far from being achieved. In order to unravel some key properties
enabling the emergence of structures potentially able to sustain their own
existence and growth, in this work we investigate the probability to observe
them in ensembles of random catalytic reaction networks characterized by
different structural properties. From the point of view of network topology, an
autocatalytic set have been defined either in term of strongly connected
components (SCCs) or as reflexively autocatalytic and food-generated sets
(RAFs). We observe that the average level of catalysis differently affects the
probability to observe a SCC or a RAF, highlighting the existence of a region
where the former can be observed, whereas the latter cannot. This parameter
also affects the composition of the RAF, which can be further characterized
into linear structures, autocatalysis or SCCs. Interestingly, we show that the
different network topology (uniform as opposed to power-law catalysis systems)
does not have a significantly divergent impact on SCCs and RAFs appearance,
whereas the proportion between cleavages and condensations seems instead to
play a role. A major factor that limits the probability of RAF appearance and
that may explain some of the difficulties encountered in laboratory seems to be
the presence of molecules which can accumulate without being substrate or
catalyst of any reaction.Comment: pp 113-12
Remarks on the notion of quantum integrability
We discuss the notion of integrability in quantum mechanics. Starting from a
review of some definitions commonly used in the literature, we propose a
different set of criteria, leading to a classification of models in terms of
different integrability classes. We end by highlighting some of the expected
physical properties associated to models fulfilling the proposed criteria.Comment: 22 pages, no figures, Proceedings of Statphys 2
Thermodynamic Bethe ansatz for non-equilibrium steady states: exact energy current and fluctuations in integrable QFT
We evaluate the exact energy current and scaled cumulant generating function (related to the large-deviation function) in non-equilibrium steady states with energy flow, in any integrable model of relativistic quantum field theory (IQFT) with diagonal scattering. Our derivations are based on various recent results of Bernard and Doyon. The steady states are built by connecting homogeneously two infinite halves of the system thermalized at different temperatures Tl, Tr, and waiting for a long time. We evaluate the current J(Tl, Tr) using the exact QFT density matrix describing these non-equilibrium steady states and using Zamolodchikov's method of the thermodynamic Bethe ansatz (TBA). The scaled cumulant generating function is obtained from the extended fluctuation relations which hold in integrable models. We verify our formula in particular by showing that the conformal field theory (CFT) result is obtained in the high-temperature limit. We analyze numerically our non-equilibrium steady-state TBA equations for three models: the sinh-Gordon model, the roaming trajectories model, and the sine-Gordon model at a particular reflectionless point. Based on the numerics, we conjecture that an infinite family of non-equilibrium c-functions, associated with the scaled cumulants, can be defined, which we interpret physically. We study the full scaled distribution function and find that it can be described by a set of independent Poisson processes. Finally, we show that the 'additivity' property of the current, which is known to hold in CFT and was proposed to hold more generally, does not hold in general IQFT—that is, J(Tl, Tr) is not of the form f(Tl) − f(Tr)
Spin dynamics in finite cyclic XY model
Evolution of the z-component of a single spin in the finite cyclic XY spin
1/2 chain is studied. Initially one selected spin is polarized while other
spins are completely unpolarized and uncorrelated. Polarization of the selected
spin as a function of time is proportional to the autocorrelation function at
infinite temperature. Initialization of the selected spin gives rise to two
wave packets moving in opposite directions and winding over the circle. We
express the correlation function as a series in winding number and derive
tractable approximations for each term. This allows to give qualitative
explanation and quantitative description to various finite-size effects such as
partial revivals and transition from regular to erratic behavior.Comment: v2: substantially extended; v3: references added, accepted to Phys.
Rev.
Quasi-local conserved charges and spin transport in spin-1 integrable chains
We consider the integrable one-dimensional spin-1 chain defined by the Zamolodchikov-Fateev (ZF) Hamiltonian. The latter is parametrized, analogously to the XXZ spin-1/2 model, by a continuous anisotropy parameter and at the isotropic point coincides with the well-known spin-1 Babujian-Takhtajan Hamiltonian. Following a procedure recently developed for the XXZ model, we explicitly construct a continuous family of quasi-local conserved operators for the periodic spin-1 ZF chain. Our construction is valid for a dense set of commensurate values of the anisotropy parameter in the gapless regime where the isotropic point is excluded. Using the Mazur inequality, we show that, as for the XXZ model, these quasi-local charges are enough to prove that the high-temperature spin Drude weight is non-vanishing in the thermodynamic limit, thus establishing ballistic spin transport at high temperature
- …