25 research outputs found

    Fluorescein isothiocyanate stability in different solvents

    Get PDF
    Well-established label in biomolecules analysis, fluorescein isothiocyanate is commercially available in its two different isomers with equal fluorescence sensitivity, differing in meta- vs. para-isothiocyanate position. It was found in this study that the stability of the isomers depends on the polarity of different solvents and the pyridine (stabiliser) presence. The lowest stability has fluorescein isothiocyanate in water solvent. In acidic solution, their quinoid (acid) form switches to the lactone form. The p-quinoid form has higher tendency to create dimers and trimers and is less soluble in acetone than the lactone form. [GRAPHICS] .Peer reviewe

    Cooperative Ligands in Dissolution of Gold

    Get PDF
    Development of new, environmentally benign dissolution methods for metallic gold is driven by needs in the circular economy. Gold is widely used in consumer electronics, but sustainable and selective dissolution methods for Au are scarce. Herein, we describe a quantitative dissolution of gold in organic solution under mild conditions by using hydrogen peroxide as an oxidant. In the dissolution reaction, two thiol ligands, pyridine-4-thiol and 2-mercaptobenzimidazole, work in a cooperative manner. The mechanistic investigations suggest that two pyridine-4-thiol molecules form a complex with Au-0 that can be oxidized, whereas the role of inexpensive 2-mercaptobenzimidazole is to stabilize the formed Au-I species through a ligand exchange process. Under optimized conditions, the reaction proceeds vigorously and gold dissolves quantitatively in two hours. The demonstrated ligand-exchange mechanism with two thiols allows to drastically reduce the thiol consumption and may lead to even more effective gold dissolution methods in the future.Peer reviewe

    A catalytic approach via retro-aldol condensation of glucose to furanic compounds

    Get PDF
    The synthesis of new types of furan-based compounds other than 5-hydroxymethylfurfural from glucose is a very attractive yet underexploited strategy. We report here a catalytic conversion of glucose with acetylacetone (acac) to furan-centered chemicals, 2-methyl-3-acetylfuran (MAF) and 1-(5-(1,2-dihydroxyethyl)-2-methylfuran-3-yl)ethan-1-one (DMAF), which are potential building blocks for the synthesis of fine chemicals. The experimentally supported reaction mechanism is cascade-type, including glycolaldehyde (GA) formation by H2MoO4-catalysed retro-aldol condensation (C2 + C4) of glucose and immediate capture of transient C2 and C4 intermediates by acac to yield MAF and DMAF. To the best of our knowledge, this is the first report on the straightforward synthesis of MAF and DMAF from glucose, providing a new but generic synthesis strategy for GA-based C2 and erythrose-based C4 chemistry in biorefining.Peer reviewe

    Metal-Free C-H Borylation of N-Heteroarenes by Boron Trifluoride

    Get PDF
    Organoboron compounds are essential reagents in modern C-C coupling reactions. Their synthesis via catalytic C-H borylation by main group elements is emerging as a powerful tool alternative to transition metal based catalysis. Herein, a straightforward metal-free synthesis of aryldifluoroboranes from BF(3)and heteroarenes is reported. The reaction is assisted by sterically hindered amines and catalytic amounts of thioureas. According to computational studies the reaction proceeds via frustrated Lewis pair (FLP) mechanism. The obtained aryldifluoroboranes are further stabilized against destructive protodeborylation by converting them to the corresponding air stable tetramethylammonium organotrifluoroborates.Peer reviewe

    Schiff base Cu(I) catalyst for aerobic oxidation of primary alcohols

    Get PDF
    We report here new copper(I)-Schiff base complexes for the selective oxidation of primary alcohols to aldehydes under ambient conditions (with 2,2,6,6-tetramethylpiperdine-N-oxyl (TEMPO), N-methylimidazole (NMI), ambient air, acetonitril and RT). Particularly, the copper(I) complex bearing N-(4-fluorophenyl)-1-(furan-2-yl)methanimine (L2) showed high activity in the series and gave near- quantitative yields in the oxidations of benzyl alcohol (99% yield in 1 h) and 1-octanol (96% yield in 24 h). Based on the X-ray structure determination, the complex has a square pyramidal coordination accomplished by two L2 ligands and bromide as a counter anion. The oxidation reactions were monitored with UV vis and in situ ATR-IR spectroscopy to study the changes in the catalytic structure and to elucidate the catalytic properties and the mechanistic details. Accordingly, detachment of one of the L2 ligands from the complexes is related to the oxidation activity.Peer reviewe

    Synthesis of Diaryl Hydroxyl Dicarboxylic Acids from Amino Acids

    Get PDF
    Herein we report a unique method for preparing diaryl hydroxyl dicarboxylic acids in a diastereospecific manner. The three-component reaction occurs between amino acid, aromatic aldehyde, and primary alcohol in alkaline solutions under microwave-assisted conditions. The dicarboxylic acids are isolated as sodium salts in high yields (up to 77%) by direct precipitation from the reaction solution. The experimental results suggest that the diastereospecificity originates from a [3,3]-sigmatropic rearrangement followed by a sodium-assisted hydride transfer. As further shown, the previously unreported dicarboxylic acids are easily turned into corresponding delta-lactones.Peer reviewe

    Iodine-Catalysed Dissolution of Elemental Gold in Ethanol

    Get PDF
    Gold is a scarce element in the Earth's crust but indispensable in modern electronic devices. New, sustainable methods of gold recycling are essential to meet the growing eco-social demand of gold. Here, we describe a simple, inexpensive, and environmentally benign dissolution of gold under mild conditions. Gold dissolves quantitatively in ethanol using 2-mercaptoben-zimidazole as a ligand in the presence of a catalytic amount of iodine. Mechanistically, the dissolution of gold begins when I-2 oxidizes Au-0 and forms a [(AuI2)-I-1](-) species, which undergoes subsequent ligand-exchange reactions and forms a stable bis-ligand Au-1 complex. H2O2 oxidizes free iodide and regenerated I-2 returns back to the catalytic cycle. Addition of a reductant to the reaction mixture precipitates gold quantitatively and partially regenerates the ligand. We anticipate our work will open a new pathway to more sustainable metal recycling with the utilization of just catalytic amounts of reagents and green solvents.Peer reviewe

    Quantitative Analysis of Porous Silicon Nanoparticles Functionaliza-tion by 1H NMR

    Get PDF
    Porous silicon (PSi) nanoparticles have been applied in various fields, such as catalysis, imaging, and biomedical applications, because of their large specific surface area, easily modifiable surface chemistry, biocompatibility, and biodegradability. For biomedical applications, it is important to precisely control the surface modification of PSi-based materials and quantify the functionalization density, which determines the nanoparticle’s behavior in the biological system. Therefore, we propose here an optimized solution to quantify the functionalization groups on PSi, based on the nuclear magnetic resonance (NMR) method by combining the hydrolysis with standard 1H NMR experiments. We optimized the hydrolysis conditions to degrade the PSi, providing mobility to the molecules for NMR detection. The NMR parameters were also optimized by relaxation delay and the number of scans to provide reliable NMR spectra. With an internal standard, we quantitatively analyzed the surficial amine groups and their sequential modification of polyethylene glycol. Our investigation provides a reliable, fast, and straightforward method in quantitative analysis of the surficial modification characterization of PSi requiring a small amount of sample.Peer reviewe

    Installation of an aryl boronic acid function into the external section of N-aryl-oxazolidinones : Synthesis and antimicrobial evaluation

    Get PDF
    N-aryl-oxazolidinones is a prominent family of antimicrobials used for treating infections caused by clinically prevalent Gram-positive bacteria. Recently, boron-containing compounds have displayed intriguing potential in the antibiotic discovery setting. Herein, we report the unprecedented introduction of a boron-containing moiety such as an aryl boronic acid in the external region of the oxazolidinone structure via a chemoselective acyl coupling reaction. As a result, we accessed a series of analogues with a distal aryl boronic pharmacophore on the oxazolidinone scaffold. We identified that a peripheric linear conformation coupled with freedom of rotation and no further substitution on the external aryl boronic ring, an amido linkage with hydrogen bonding character, in addition to a para-relative disposition between boronic group and linker, are the optimal combination of structural features in this series for antimicrobial activity. In comparison to linezolid, the analogue comprising all those features, compound 20b, displayed levels of antimicrobial activity augmented by an eight-fold to a thirty-two-fold against a panel of Gram-positive strains, and a near one hundred-fold against Escherichia coli JW5503, a Gram-negative mutant strain with a defective efflux capability.Peer reviewe

    LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy

    Get PDF
    Breast cancer, with around 2 million new cases in 2019, is the second most common cancer worldwide and the second leading cause of cancer death among females. The aim of this work is to prepare a targeting nanoparticle through the conjugation of LinTT1 peptide, a specific molecule targeting p32 protein overexpressed by breast cancer and cancer associated cells, on liposomes' surface. This approach increases the cytotoxic effects of doxorubicin (DOX) and sorafenib (SRF) co-loaded in therapeutic liposomes on both 2D and 3D breast cancer cellular models. The liposome functionalization leads to a higher interaction with 3D breast cancer spheroids than bare ones. Moreover, interaction studies between LinTT1-functionalized liposomes and M2 primary human macrophages show an internalization of 50% of the total nanovesicles that interact with these cells, while the other 50% results only associated to cell surface. This finding suggests the possibility to use the amount of associated liposomes to enrich the hypoxic tumor area, exploiting the ability of M2 macrophages to accumulate in the central core of tumor mass. These promising results highlight the potential use of DOX and SRF co-loaded LinTT1-functionalized liposomes as nanomedicines for the treatment of breast cancer, especially in triple negative cancer cells.Peer reviewe
    corecore