117 research outputs found

    Prevalence of antibodies against Neospora caninum in dogs from urban areas in Central Poland

    Get PDF
    Neospora caninum is a protozoan parasite which causes abortion in cattle as well as reproduction problems and neurological disorders in dogs. To assess the prevalence of the parasite in urban dogs in the Mazovian Voivodeship, Central Poland, serum samples from 257 dogs were analyzed for the presence of specific IgG antibodies. The examined dogs visited three private veterinary clinics located in Warsaw due to control tests, vaccinations, or other reasons not directly connected with neosporosis. Using ELISA and Western blot, antibodies against the parasite were detected in 56 out of 257 dogs, giving a prevalence of 21.7%. A greater prevalence was observed in female dogs than in males, 28% and 17.3%, respectively, and the differences were statistically significant (p < 0.05). There were no significant differences in seroprevalence of Neospora infection within the age groups (p > 0.05). This study indicates the presence of N. caninum in the Mazovian Voivodeship, in dogs which live in urban areas and exposure of these dogs to the parasite. The fact that seropositive dogs had no contact with cattle confirms the important role of dogs in the parasite’s epidemiology

    ASME 88-1CE-6, presented at the Energy-Source Technology Conference and Exhibition

    Get PDF
    Fig. 5 Velocity versus anguiar dispiacement (V8 engine) attained from the inertia value using the least squares method is consistently smaller than the reference data, and eventually leads to larger velocity estimation error than the average method Some precautions are needed when applying the least squares method to compute the engine inertia value. For engines operating at high speeds, the velocity related term in Eq. (1) could be very large compared with the other terms. This could result in some confusing situations. For instance, engines might decelerate over some portion of the engine operation cycle while the net external torque accelerating the engine is positive; or engines might accelerate while the net external torque is negative. These operation situations might make negative engine inertia value estimations possible, which is not feasible. In other cases, engines might have very small accelerations or decelerations while net external torque is moderate to large. For these cases, the calculation might lead to very large engine inertia values, which is not feasible either. The cases mentioned above are most likely to occur when engines operate at high speeds. Those erroneous data corresponding the situations above must be Altered out before applying the least squares method to the engine inertia value computation. The criterion used in this study to decide whether data should be used to calculate the engine inertia values is to check the quotient of the net external torque divided by the engine acceleration. This quotient should not be too large or too small relative to the average engine inertia value. Those data whose quotient are significantly away from the average engine inertia value are likely to fall in the situations mentioned above, and those data should not be used in the engine inertia value computation. V Conclusions The engine inertia values calculated by the least squares method guarantees minimum acceleration and velocity estimation errors for engine operating at constant average velocities. As for monotonically accelerating and decelerating engines, simulations in the study show that the engine model with an inertia calculated by the least squares method leads to smaller estimation errors in acceleration but larger estimation errors in velocity than the constant inertia engine model with an average inertia. It is important that the user knows the type of engine, its range of operation, and the type of loading in order to calculate an optimal engine inertia for the control purpose. This study has provided guidance in understanding the effects of engine performance variables and in calculating an appropriate estimate for the engine inertia. Acknowledgment

    Evaluation of Wuchereria bancrofti GST as a Vaccine Candidate for Lymphatic Filariasis

    Get PDF
    Lymphatic parasites survive for years in a complex immune environment by adopting various strategies of immune modulation, which includes counteracting the oxidative free radical damage caused by the host. We now know that the filarial parasites secrete antioxidant enzymes. Among these, the glutathione-S-transferases (GSTs) have the potent ability to effectively neutralize cytotoxic products arising from reactive oxygen species (ROS) that attack cell membranes. Thus, GSTs have the potential to protect the parasite against host oxidative stress. GSTs of several helminthes, including schistosomes, fasciola and the filarial parasite Seteria cervi, are also involved in inducing protective immunity in the host. The schistosome 28 kDa GST has been successfully developed into a vaccine and is currently in Phase II clinical trials. Thus, GST appears to be a potential target for vaccine development. Therefore, in the present study, we cloned W. bancrofti GST, and expressed and purified the recombinant protein. Immunization and challenge experiments showed that 61% of protection could be achieved against B. malayi infections in a jird model. In vitro studies confirm that the anti-WbGST antibodies participate in the killing of B. malayi L3 through an ADCC mechanism and enzymatic activity of WbGST appears to be critical for this larvicidal function

    Profiling cytotoxic microRNAs in pediatric and adult glioblastoma cells by high-content screening, identification, and validation of miR-1300

    Get PDF
    MicroRNAs play an important role in the regulation of mRNA translation and have therapeutic potential in cancer and other diseases. To profile the landscape of microRNAs with significant cytotoxicity in the context of glioblastoma (GBM), we performed a high-throughput screen in adult and pediatric GBM cells using a synthetic oligonucleotide library representing all known human microRNAs. Bioinformatics analysis was used to refine this list and the top seven microRNAs were validated in a larger panel of GBM cells using state-of-the-art in vitro assays. The cytotoxic effect of our most relevant candidate was assessed in a preclinical model. Our screen identified ~100 significantly cytotoxic microRNAs with 70% concordance between cell lines. MicroRNA-1300 (miR-1300) was the most potent and robust candidate. We observed a striking binucleated phenotype in miR-1300 transfected cells due to cytokinesis failure followed by apoptosis. This was also observed in two stem-like patient-derived cultures. We identified the physiological role of miR-1300 as a regulator of endomitosis in megakaryocyte differentiation where blockade of cytokinesis is an essential step. In GBM cells, where miR-1300 is normally not expressed, the oncogene Epithelial Cell Transforming 2 (ECT2) was validated as a direct key target. ECT2 siRNA phenocopied the effects of miR-1300, and ECT2 overexpression led to rescue of miR-1300 induced binucleation. We showed that ectopic expression of miR-1300 led to decreased tumor growth in an orthotopic GBM model. Our screen provides a resource for the neuro-oncology community and identified miR-1300 as a novel regulator of endomitosis with translatable potential for therapeutic application

    Balancing repair and tolerance of DNA damage caused by alkylating agents

    Get PDF
    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity

    Emerging therapies for breast cancer

    Full text link

    Konferencja naukowa pt. Tkanka jako siedlisko dla pasozytow

    No full text
    corecore