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Fig. 5 Velocity versus anguiar dispiacement (V8 engine) 

attained from the inertia value using the least squares method 
is consistently smaller than the reference data, and eventually 
leads to larger velocity estimation error than the average method 
(Fig. 5) . 

Some precautions are needed when applying the least squares 
method to compute the engine inertia value. For engines op
erating at high speeds, the velocity related term in Eq. (1) could 
be very large compared with the other terms. This could result 
in some confusing situations. For instance, engines might decel
erate over some portion of the engine operation cycle while the 
net external torque accelerating the engine is positive; or engines 
might accelerate while the net external torque is negative. These 
operation situations might make negative engine inertia value 
estimations possible, which is not feasible. In other cases, en
gines might have very small accelerations or decelerations while 
net external torque is moderate to large. For these cases, the 
calculation might lead to very large engine inertia values, which 
is not feasible either. The cases mentioned above are most likely 
to occur when engines operate at high speeds. Those erroneous 
data corresponding the situations above must be Altered out 
before applying the least squares method to the engine inertia 
value computation. 

The criterion used in this study to decide whether data should 
be used to calculate the engine inertia values is to check the 
quotient of the net external torque divided by the engine acceler
ation. This quotient should not be too large or too small relative 
to the average engine inertia value. Those data whose quotient 
are significantly away from the average engine inertia value are 
likely to fall in the situations mentioned above, and those data 
should not be used in the engine inertia value computation. 

V Conclusions 
The engine inertia values calculated by the least squares 

method guarantees minimum acceleration and velocity estima
tion errors for engine operating at constant average velocities. 
As for monotonically accelerating and decelerating engines, 
simulations in the study show that the engine model with an 
inertia calculated by the least squares method leads to smaller 
estimation errors in acceleration but larger estimation errors in 
velocity than the constant inertia engine model with an average 
inertia. It is important that the user knows the type of engine, 
its range of operation, and the type of loading in order to calcu
late an optimal engine inertia for the control purpose. This study 
has provided guidance in understanding the effects of engine 
performance variables and in calculating an appropriate estimate 
for the engine inertia. 
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Experimental Robustness Study of a 
Second-Order Sliding Mode 
Controller 

Andre Blom^ and Bram de Jager^'^ 

The design of a Second-Order Sliding Mode Controller is dis
cussed and guidelines are given for tuning. The robustness to 
unmodeled dynamics and parameter-errors is investigated and 
tested in an experimental case .study. The experimental results, 
as far as robustness to unmodeled dynamics is concerned, are 
not better than for a traditional PD-controller. When robustness 
to parameter-errors is concerned the Second-Order Sliding 
Mode Controller performs .slightly better. 

Introduction 

Mechanical manipulators are controlled to make their end-
effector track a desired trajectory. The control is often based 
on a mathematical model that represents the dynamic behaviour 
of the system. In practice, this model is never an exact represen
tation of reality. There are always phenomena like unmodeled 
dynamics, inaccurate parameters and measurement noise that 
cause model imprecisions. These imprecisions may come from 
actual uncertainty about the system, or from the deliberate 
choice for a simplified representation of the system dynamics. 
The presence of these imprecisions often requires a robust con
trol algorithm. 

One class of robust controllers is VSS (Variable Structure 
System), see Utkin (1977). This class of controllers can be 
used when the model structure itself is inaccurate, but the inac
curacies are bounded with known bounds. VSS controllers are 
often used as Sliding Mode Controllers. Characteristic compo
nents of Sliding Mode Controllers are sliding hyperplanes s(x, 
f) = 0 in the state space. 

Recently the traditional sliding control (applying a first-order 
sliding condition) has been further enhanced, resulting in a 
'Second-Order Sliding Mode Control' (SOSMC). The SOSMC 
was presented by Chang (1990) for MIMO systems in Control
lability Canonical Form. Elmali and Olgac (1992) extended 
the SOSMC-technique to general nonlinear MIMO systems, 
applying I/0-linearization first. 

In this paper the theory of SOSMC in combination with 
I/0-linearization is tested in an experimental environment to 
investigate the robustness to unmodeled dynamics (i.e., system 
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of higher order than the model) and parameter-errors. To tune 
the SOSMC, a set of guidelines is given to achieve best perfor
mance. An expression is given for the tracking accuracy and 
from this expression we recognize a trade-off between tracking 
accuracy and damping. 

Preliminaries 
Consider a nonlinear system that can be described (exactly) 

by a MIMO model in 'Controllability Canonical Form,' linear' 
in the control u (affine): 

x<"' = f (x) + B(x)u (1) 

with 

X 

with 

<"' = [y\"'\ y^2^\ . yl"'*]'^ « ! + «2 + • • • + «* = « 

X e R" (state vector) 

u e R'" (input vector) 

y = [yi, . . . , YkV G R* (output vector) 

Superscripts in parenthesis indicate the order of time deriva
tives. 

Under certain conditions, a nonlinear system can be trans
formed into the 'Controllability Canonical Form' by a technique 
called I/O-linearization. This technique and the conditions are 
described by Elmali and (Dlgac (1992), based on Isidori (1989). 

Assume that to control the system a mathematical model of 
the system is available: 

f(x) +• B(x)u (2) 

For simplicity we assume that the states can be identified 
with those of (1). This is not necessary. 

Because sliding control requires the uncertainties to be 
bounded with known bounds, a general assumption is: 

f (x) = f(x) + Af (X) with | |Af (x ) | |=sa Vx 

B(x) = B(\) + AS(x) with ||AiS(x)|| =£ /3 Vx 
(3) 

In properly controlled systems the state vector x will behave 
bounded, so the uncertainty bounds can be determined. 

MIMO Sliding Control With Second-Order Sliding 
Condition 

A second-order Sliding Mode Control strategy by Chang 
(1990) defines a zero Zo, in the "error dynamics": 

1 " ^ ° ' ) ^ ' = . " 1 
dt 

+ \ji 1 I e, di (4) 

Si = y, -- >,•,/) for i = 1 ... k 

This equation is a set of band-pass filters where the break-
frequencies are determined by the selection of the poles (Xy,) 
and zero (zo,)- An integral term in the equation assures zero 
steady-state errors. Writing (4) in the unfactored (polynomial) 
form we get (see Chang (1990)): 

s + ZoS = e<""" -I- C„-Me<"^" + ... + C :,e + Co f 
Jo 

edr (5) 

where s = 0 represents the sliding hyperplanes. Taking time 
derivatives of (5) yields: 

with 

s + ZoS = e*"' -I- e,, 

e,, = C„-,e<"-'> + . . . -h C,e 4- Coe 

(6) 

and this is used to relate s with the control input u. The error-
vector Cp can be computed if all states are measured. Substituting 
(1) in (6) yields: 

s + ZoS = f + Bu - x^"' + e„ (7) 

Stability is guaranteed if the control is designed as: 

u = B" ' (u - A:'sign(s)) 

f -I- x*,"' - ep + ZoS - ils with fl = diag(i^^) 
(8) 

and the gain k is quantified as (see Chang, 1990 and Elmali 
andOlgac, 1992): 

k > 
- ;0||B~'sign(s)|| 

if ^||B~'sign(s)|| < 1 (9) 

We get the 's-dynamics' by substituting the control (8) in 
(6): 

s -I- fc-sign(s) + ns H- ABB~'(*:-sign(s) 

= Af + ABB (xr 
ZoS + fis) 

- f - e „ ) (10) 

As we can see from (8) the control law is discontinuous 
across s = 0, which leads to chattering. In general, chattering 
must be efiminated for the controller to perform properly. This 
can be achieved by smoothing out the control discontinuity in 
a boundary layer neighboring the switching surface (s = 0) . 
Therefore we don't use the 'signum'-function (sign), but we 
apply the "saturation"-function (sat) instead for each element 
s'i of s: 

sat(.j,, 0 ) = . 

1 Si > 4) 

T l̂ /l (11) 

-1 Si < -4> 

Then, the s-dynamics within the boundary layer become: 

s + k^-'s + Q.S + ABB\k^^'s - ZoS + Jls) 

= Af -h ABB-'(xJ/" - f - e^) (12) 

This equation represents a set of second-order low-pass fil
ters. 

Tuning the SOSMC 

The lack of tools in nonlinear systems theory now creates a 
problem; a systematic way of selecting the parameters Zo, ui,,, 
$, C„_i . . . Co and k does not exist. Yet, the influence of the 
tuning parameters can be evaluated. 

First, consider the gain k. This control parameter is com
pletely determined by the confinements on the uncertainties and 
can be calculated with (9). For control design purposes, the 
minimum value of k is selected, since the least control effort is 
desired. 

Next, we investigate the influence of the zero zo in the error-
dynamics. Chang (1990) suggested that higher values of the 
zeros provide more damping in the s-dynamics. As we can see 
from (10/12), Zo indeed contributes in the damping of the s-
dynamics, but the exact influence is not clear, since the total 
damping can increase and decrease, depending on the "sign" 
of the matrix ABB ~'Zo. Simulations, however, indeed show 
more "damping" when zo is increased. This is very likely due 
to the error-dynamics (4), in whose response zo has a 'damping' 
contribution, recognized as a reduction of the rise-time. 

Third, we investigate the influence of uj„. As we can see from 
the s-dynamics inside the boundary layer (12), LO„ sets the 
break-frequency. Preferably we choose this break-frequency 
(determining the s-dynamics bandwidth) smaller than the low
est unmodeled structural resonant mode. 
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Fig. 1 Schematic representation XY-table 

Fourth, to simplify the choice of the poles in the error dynam
ics (by setting C„_i . . . Co) we can choose the bandwidth of 
the error dynamics the same as the bandwidth (a;„) of the s-
dynamics. This is not necessary. As we will show, a larger 
error-dynamics-bandwidth has a positive effect on the tracking 
error, but may involve a higher control effort. 

Fifth, we will motivate the choice of $, by deriving an expres
sion for the tracking error. Within a finite time | s | < $ . Noting 
that s contains no frequencies higher than LO„ (as an approxima
tion) we find: | s | < a;„#, so that the maximal tracking error 
will be (once | s | < $ and for the SISO case): 

H < 
H^n + Zo) 
\\\2 . . • X.« 

(13) 

with a guaranteed precision e (Blom, 1992). $ has a minimum 
value, since the implementation has a limited sample frequency. 
We see from (13) that the zero affects the tracking accuracy 
in a negative sense also. However, this zero provides damping, 
which is especially important during transient. We see that there 
exists a trade-off between tracking accuracy and damping. 

Experiments 
To investigate the SOSMC in an experimental environment, 

the control law was implemented in the control software of an 
XY-table.. In Fig. 1 a schematic top view representation of the 
XF-table is given. The end effector is a slide with mass m ,̂ 
which can move in the XF-plane by three slideways. Two of 
them slide in x-direction and one in ))-direction. The belt wheels 
of both slideways are driven by servomotors, exerting torques 
Ti and T^. Coulomb friction appears in all slides and is repre
sented by friction-torques Wi, W2, and W3 [Nm]. Viscous 
damping is represented by Di, D2, and D3 [Nms]. 

Unfortunately it is not possible to measure the position of 
the end effector directly. Only three encoder signals are avail
able: X\,X2, and y. We therefore restrict ourselves to the control 
of motor positions: Xi and y. 

The belt wheels of the slideways in x-directions can be con
nected in two ways: 

(1) With a rigid bar (fe, = » ) , resulting in a (stiff) model 
with two degrees of freedom: Xi,y, since the transla
tions Xi and X2 are equal. 

(2) With a torsion spring with stiffness ki, resulting in a 
(flexible) model with three degrees of freedom: X \ , X2 
and y. 

The equations of motion in case of the two degrees of free
dom (stiff) model are represented by: 

ajXi + 02 sign (xi) + a^Xi = Txlr^ 

Qiy + assign iy) + af,y = Tilry (14) 

with identified parameters: 

oi = Jilrl + 2m, + nie + niy = 34 [kg] 

02 = J-ilrl + m, = 2.7 [kg] 

a, = (W, + W2)/r, = 36 [N] 

a, = W,/ry = 9 [N] 

as = (£), + D2)/rl = 50 [Ns/m] 

a, = Da/rJ = 8 [Ns/m] 

r„ r, = 0.01 [m] 

The equations of motion in case of the three degrees of freedom 
(flexible) model are much more complex and will therefore not 
be presented. 

The desired trajectory to be tracked by the end-effector during 
all experiments is chosen to be a circle: 

Xrf = 0.5 - /" cos {ujt) [m] 

yd = 0.5 -I- r sin (wf) [m] 

with r = 0.25 [m] and w = TT [rad/s]. The setting of the SMC 
is tuned up, to get the best results, i.e., the controlled system 
bandwidth is chosen maximal, with a relative damping in the 
error dynamics of /3 = 0.71. The gain k has been determined 
by assuming that the available three degrees of freedom model 
is an exact representation of reality, so that the uncertainty 
bounds on the two degrees of freedom model can be calculated 
(3). The control parameters are listed below. 

Cx = 63.6 [rad/s] 

Co = 2025 [rad/s'] 

a;„ = 45 [rad/s] 

Zo = 90 [rad/s] 

/t = 70 [m/s^] 

$ = 1.11 [m/s] 

To assess robustness of the SOSMC to unmodeled dynamics, 
experiments are done with several torsion springs kx. The results 
are compared with a traditional PD-controller, whose setting is 
also tuned up, resulting in a controlled system break frequency 
of 45 [rad/s]. 

To eliminate the trade-off between damping and tracking 
accuracy, experiments are done while modifying the zero on
line, from the initial (i.e., high) value during transient (damp
ing) to half the initial value (i.e., low) afterward (high tracking 
accuracy). If switching is only done once, stability is guaran
teed. The results for the x-direction only are shown in Fig. 2. 
In this figure the tracking error RMS is plotted against the 
stiffness of torsion spring ^i (8 springs were available with 
stiffnesses from 0.19 to 213 [Nm/rad]). 

We see that for all stiffnesses kx the SOSMC with modifica
tion of Zo realizes a smaller tracking error than an "ordinary" 
SOSMC, as expected (13). For relatively stiff torsion springs 
(right side) both SOSMC controllers (with and without modifi
cation of Zo) realize a smaller tracking error RMS than a PD 
controller. However, the tracking error RMS for the PD-Con-
troUer is more constant for a wide range of stiffnesses, in con-
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Fig. 2 Robustness to unmodeled dynamics 
solid: SOSMC 
dashed: SOSMC witli modification Zo 
dotted: PD control 

is concerned, there is no advantage in using a SOSMC technique 
in favor of a traditional PD-controller. As far as robustness to 
parameter errors is concerned, the SOSMC performs slightly 
better than a PD controller. However, for a large range of op
erating conditions the SOSMC has far better tracking properties, 
due to its model based structure, and should be given preference. 
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trast with the SOSMC. For one torsion spring {k\ = 0.5 [Nm/ 
rad]) the tracking error realized with a PD-Controller is even 
smaller than realized with a SOSMC. We therefore conclude 
that a PD controller is more robust to unmodeled dynamics 
(due to stiffness /c,) than SOSMC. The level of robustness for 
both SOSMC is approximately the same. 

A strange phenomenon is that for a decreasing stiffness the 
tracking error RMS increases, but the weakest spring fci again 
yields a small tracking error RMS. This phenomenon can be 
seen in all experiments and is because we control the motor 
positions. 

To assess robustness to parameter variations, experiments are 
done with additional mass attached to the end-effector (m,,). 
The results are shown in Fig. 3. In this figure the tracking error 
RMS is plotted against the additional mass. 

For all mass-variations the SOSMC with modification of ZQ 
realizes the smallest, and the PD-controller the highest tracking 
error. The tracking error, realized with both SOSMC is more 
constant for variations in the additional mass, in contrast with 
the PD-controller. We conclude that both SOSMC are more 
robust to mass-variations than a PD-controller. Again, the ro
bustness of both SOSMC is approximately the same. 

Conclusions 
The main conclusion of this investigation into robustness of 

the SOSMC is that as far as robustness to unmodeled dynamics ^ Tnfrorliirtiori 

On Position/Force Control of Robot 
Interacting With Dynamic 
Environment in Cartesian Space 

Miomir Vukobratovic^ and 
Radoslav Stojic* 

In this paper, the problem of simultaneous stabilization of both 
the robot motion and interaction force in Cartesian space, based 
on the unified approach to contact task problem in robotics [1], 
is considered. This control task is solved under the conditions 
set on environment dynamics which are less restrictive than 
those in [7] where some particular environment properties are 
required to ensure overall system stability. Furthermore, the 
one-to-one correspondence between closed-loop motion and 
force dynamic equations is obtained and unique control law 
ensuring system stability and preset either motion or force tran
sient response is proposed. 

^ 10» 

10-1 

-

-
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_ 

' • 
1 2 

additional mass [kg] 

Based on the stability principle of closed-loop control sys
tems the control laws that simultaneously stabilize both the 
robot motion and interaction force with the environment have 
been synthesized in refs. [1 -5 ] . These control laws, as distinct 
from the control laws synthesized using the known traditional 
approaches [6 -10] , possess the exponential stability of closed-
loop systems and ensure the preset quality of transient responses 
of motion and interaction force. However, control laws stabiliz
ing desired interaction force with preset quality of transient 
response are applicable only if the environment possesses ' 'in
ternal stability" property [1], In this paper, these restrictive 
conditions are removed and the more general case of dynamic 
environment is considered. In cases when environment dynam
ics can be approximated sufficiently well by linear time invari
ant model in Cartesian space, necessary and sufficient condi-

Fig. 3 Robustness to parameter variations 
solid: SOSMC 
dashed: SOSMC with modification Za 
dotted: PD control 
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