279 research outputs found

    Electron-conformational transformations in nanoscopic RyR channels govern both the heart's contraction and beating

    Full text link
    We show that a simple biophysically based electron-conformational model of RyR channel is able to explain and describe on equal footing the oscillatory regime of the heart's cell release unit both in sinoatrial node (pacemaker) cells under normal physiological conditions and in ventricular myocytes under Ca2+^{2+} SR overload.Comment: 6 pages, 3 figure

    Dzyaloshinsky-Moriya antisymmetric exchange coupling in cuprates: Oxygen effects

    Full text link
    We revisit a problem of Dzyaloshinsky-Moriya antisymmetric exchange coupling for a single bond in cuprates specifying the local spin-orbital contributions to Dzyaloshinsky vector focusing on the oxygen term. The Dzyaloshinsky vector and respective weak ferromagnetic moment is shown to be a superposition of comparable and, sometimes, competing local Cu and O contributions. The intermediate oxygen 17^{17}O Knight shift is shown to be an effective tool to inspect the effects of Dzyaloshinsky-Moriya coupling in an external magnetic field. We predict the effect of strongstrong oxygen weak antiferromagnetism in edge-shared CuO2_2 chains due to uncompensated oxygen Dzyaloshinsky vectors. Finally, we revisit the effects of symmetric spin anisotropy, in particular, those directly induced by Dzyaloshinsky-Moriya coupling.Comment: 12 pages, 2 figures, submitted to JET

    Disproportionation and electronic phase separation in parent manganite LaMnO_3

    Full text link
    Nominally pure undoped parent manganite LaMnO_3 exhibits a puzzling behavior inconsistent with a simple picture of an A-type antiferromagnetic insulator (A-AFI) with a cooperative Jahn-Teller ordering. We do assign its anomalous properties to charge transfer instabilities and competition between insulating A-AFI phase and metallic-like dynamically disproportionated phase formally separated by a first-order phase transition at T_{disp}=T_{JT}\approx 750 K. The unconventional high-temperature phase is addressed to be a specific electron-hole Bose liquid (EHBL) rather than a simple "chemically" disproportionated R(Mn^{2+}Mn^{4+})O_3 phase. New phase does nucleate as a result of the charge transfer (CT) instability and evolves from the self-trapped CT excitons, or specific EH-dimers, which seem to be a precursor of both insulating and metallic-like ferromagnetic phases observed in manganites. We arrive at highly frustrated system of triplet (e_g^2)^3A_{2g} bosons moving in a lattice formed by hole Mn^{4+} centers. Starting with different experimental data we have reproduced a typical temperature dependence of the volume fraction of high-temperature mixed-valent EHBL phase. We argue that a slight nonisovalent substitution, photo-irradiation, external pressure or magnetic field gives rise to an electronic phase separation with a nucleation or an overgrowth of EH-droplets. Such a scenario provides a comprehensive explanation of numerous puzzling properties observed in parent and nonisovalently doped manganite LaMnO_3 including an intriguing manifestation of superconducting fluctuations.Comment: 20 pages, 8 figure

    Complex Chiral Modulations in FeGe close to Magnetic Ordering

    Full text link
    We report on detailed polarized small-angle neutron scattering on cubic FeGe in magnetic fields applied either along (transverse) the scattering vector or parallel (longitudinal)to the neutron beam. The (H,TH,T) phase diagrams for all principal axes contain a segmented AA-phase region just below the onset of magnetic order. Hexagonal Bragg-spot patterns were observed across the entire AA-phase region for the longitudinal geometry. Scattering intensity was observed in parts of the A phase for both scattering configurations. Only in a distinct pocket (A1A_1) vanishing scattering intensity was found in the transverse geometry.Comment: This paper has been withdrawn by the author due to misunderstanding with some of the co-author

    Dynamical charge inhomogeneity and crystal-field fluctuations for 4f ions in high-Tc cuprates

    Full text link
    The main relaxation mechanism of crystal-field excitations in rare-earth ions in cuprates is believed to be provided by the fluctuations of crystalline electric field induced by a dynamic charge inhomogeneity generic for the doped cuprates. We address the generalized granular model as one of the model scenario for such an ingomogeneity where the cuprate charge subsystem remind that of Wigner crystal with the melting transition and phonon-like positional excitation modes. Formal description of R-ion relaxation coincides with that of recently suggested magnetoelastic mechanism.Comment: 4 page

    NMR and LDA evidence for spiral magnetic order in the chain cuprate LiCu2O2

    Full text link
    We report on {6,7}Li nuclear magnetic resonance measurements of the spin-chain compound LiCu2O2 in the paramagnetic and magnetically ordered states. Below T about 24 K the NMR lineshape presents a clear signature of incommensurate (IC) static modulation of the local magnetic field consistent with an IC spiral modulation of the magnetic moments. {7}Li NMR reveals strong phason-like dynamical fluctuations extending well below 24 K. We hypothesize that a series of phase transitions at 24.2, 22.5, and 9 K reflects a "Devil's staircase" type behavior generic for IC systems. LDA based calculations of exchange integrals reveal a large in-chain frustration leading to a magnetical spiral.Comment: 4 pages, 4 figure

    Nonbonding oxygen holes and spinless scenario of magnetic response in doped cuprates

    Full text link
    Both theoretical considerations and experimental data point to a more complicated nature of the valence hole states in doped cuprates than it is predicted by Zhang-Rice model. Actually, we deal with a competition of conventional hybrid Cu 3d-O 2p b1gdx2y2b_{1g}\propto d_{x^2 -y^2} state and purely oxygen nonbonding state with eux,ypx,ye_{u}x,y \propto p_{x,y} symmetry. The latter reveals a non-quenched Ising-like orbital moment that gives rise to a novel spinless purely oxygen scenario of the magnetic response in doped cuprates with the oxygen localized orbital magnetic moments of the order of tenths of Bohr magneton. We consider the mechanism of 63,65{}^{63,65}Cu-O 2p transferred orbital hyperfine interactions due to the mixing of the oxygen O 2p orbitals with Cu 3p semicore orbitals. Quantitative estimates point to a large magnitude of the respective contributions both to local field and electric field gradient, and their correlated character.Comment: 7 pages, 1 figur

    Overlap integral for quantum skyrmions

    Full text link
    We made use a simplified form for the quantum skyrmion wave function based on the spin coherent states to obtain the analytical expression for appropriate overlap integral.Comment: 5 pages, no figure
    corecore