Both theoretical considerations and experimental data point to a more
complicated nature of the valence hole states in doped cuprates than it is
predicted by Zhang-Rice model. Actually, we deal with a competition of
conventional hybrid Cu 3d-O 2p b1g∝dx2−y2 state and purely
oxygen nonbonding state with eux,y∝px,y symmetry. The latter
reveals a non-quenched Ising-like orbital moment that gives rise to a novel
spinless purely oxygen scenario of the magnetic response in doped cuprates with
the oxygen localized orbital magnetic moments of the order of tenths of Bohr
magneton. We consider the mechanism of 63,65Cu-O 2p transferred orbital
hyperfine interactions due to the mixing of the oxygen O 2p orbitals with Cu 3p
semicore orbitals. Quantitative estimates point to a large magnitude of the
respective contributions both to local field and electric field gradient, and
their correlated character.Comment: 7 pages, 1 figur