39 research outputs found

    Common genetic coagulation variants are not associated with ischemic stroke in a casecontrol study

    Full text link
    OBJECTIVE: Abnormalities in the coagulation pathway are often included in the diagnostic work-up of stroke patients, especially in young adults with cryptogenic stroke. METHODS: Three common genetic variants within the coagulation cascade were investigated in 500 control subjects and in 167 patients with ischemic stroke defined by TOAST subclassification. Analysed variants were factor V Leiden, prothrombin 20210G-->A and factor XIII Val34Leu. RESULTS: The factor V Leiden mutation was over-represented in patients with cardioembolic stroke for trend, whereas the prothrombin 20210G-->A variant and the factor XIII polymorphism Val34Leu were not associated with stroke of any subtype. The three polymorphisms showed no association with stroke in subgroups of patients defined by age (A and factor XIII Val34Leu is not a useful diagnostic procedure in the work-up of ischemic stroke

    NMR spectroscopic studies on the late onset form of 3-methylglutaconic aciduria type I and other defects in leucine metabolism.

    No full text
    Contains fulltext : 50036.pdf (publisher's version ) (Closed access)A diagnosis of 3-methylglutaconic aciduria type I (OMIM: 250950) based on elevated urinary excretion of 3-methylglutaconic acid (3MGA), 3-methylglutaric acid (3MG) and 3-hydroxyisovaleric acid (3HIVA) was made in a 61-year-old female patient presenting with leukoencephalopathy slowly progressing over more than 30 years. The diagnosis was confirmed at the enzymatic and molecular level. In vivo brain MR spectroscopic imaging (MRSI) was performed at 3.0 T, and one-dimensional and two-dimensional in vitro NMR spectroscopy of body fluids of the patient was performed at 11.7 T. Additionally, we measured 1D (1)H-NMR spectra of urine of seven patients with a total of four different inborn errors of leucine metabolism. Increased concentrations of 3HIVA, 3MGA (cis and trans) and 3MG were observed in the NMR spectra of the patient's urine. In the cerebrospinal fluid, the 3HIVA concentration was 10 times higher than in the plasma of the patient and only the cis isomer of 3MGA was observed. In vivo brain MRSI showed an abnormal resonance at 1.28 ppm that may be caused by 3HIVA. Comparison of (1)H-NMR spectra of urine samples from all eight patients studied, representing five different inborn errors of leucine metabolism, showed that each disease has typical NMR characteristics. Our leukoencephalopathy patient suffers from a late-onset form of 3-methylglutaconic aciduria type I. In the literature, only very few adult patients with this conditions have been described, and 3HIVA accumulation in white matter in the brain has not been presented before in these patients. Our data demonstrate that (1)H-NMR spectroscopy of urine can easily discriminate between the known inborn errors of leucine metabolism and provide the correct diagnosis

    Genetic variants of folate and methionine metabolism and PCNSL incidence in a German patient population

    Full text link
    Functional genetic polymorphisms involved in folate and methionine metabolism play an important role in both DNA synthesis and methylation, and affect the risk of various malignancies including lymphoproliferative disorders such as systemic non-Hodgkin's lymphoma. In a retrospective analysis of 185 immunocompetent patients with primary central nervous system lymphoma (PCNSL) and 212 population controls we therefore investigated eight genetic polymorphisms affecting methionine metabolism for potential association with the development of PCNSL. We observed underrepresentation of the G-allele of the methyltetrahydrofolate homocysteine S-methyltransferase (MTR) c.2756A > G (D919G) missense polymorphism among PCNSL patients (P = 0.045; odds ratio (OR) = 0.65; 0.43-0.99). Furthermore, for the methylenetetrahydrofolate reductase (MTHFR) c.1298A > C (E429A) polymorphism the mutated C-allele was found more frequently among PCNSL patients than among population controls (P = 0.026; OR = 1.57; 1.05-2.34). There were no associations of the other polymorphisms investigated (MTHFR c.677C > T, transcobalamin 2 (Tc2) c.776C > G, cystathionin beta-synthase (CBS) c.844_855ins68, reduced folate carrier-1 (RFC-1) c.80G > A, thymidylate synthase (TYMS) 28-bp repeat, and dihydrofolate reductase (DHFR) c.594 + 59del19 bp) and the presence of PCNSL. This analysis is the largest to date to evaluate associations between genetic variants of folate and methionine metabolism and PCNSL. Our results suggest the hypothesis that folate and methionine metabolism is relevant to susceptibility to PCNSL
    corecore