1,643 research outputs found
Quantum pumping: Coherent Rings versus Open Conductors
We examine adiabatic quantum pumping generated by an oscillating scatterer
embedded in a one-dimensional ballistic ring and compare it with pumping caused
by the same scatterer connected to external reservoirs. The pumped current for
an open conductor, paradoxically, is non-zero even in the limit of vanishing
transmission. In contrast, for the ring geometry the pumped current vanishes in
the limit of vanishing transmission. We explain this paradoxical result and
demonstrate that the physics underlying adiabatic pumping is the same in open
and in closed systems.Comment: 4 pages, 2 figure
Energetics of metal slabs and clusters: the rectangle-box model
An expansion of energy characteristics of wide thin slab of thickness L in
power of 1/L is constructed using the free-electron approximation and the model
of a potential well of finite depth. Accuracy of results in each order of the
expansion is analyzed. Size dependences of the work function and electronic
elastic force for Au and Na slabs are calculated. It is concluded that the work
function of low-dimensional metal structure is always smaller that of
semi-infinite metal sample.
A mechanism for the Coulomb instability of charged metal clusters, different
from Rayleigh's one, is discussed. The two-component model of a metallic
cluster yields the different critical sizes depending on a kind of charging
particles (electrons or ions). For the cuboid clusters, the electronic spectrum
quantization is taken into account. The calculated critical sizes of
Ag_{N}^{2-} and Au_{N}^{3-} clusters are in a good agreement with experimental
data. A qualitative explanation is suggested for the Coulomb explosion of
positively charged Na_{\N}^{n+} clusters at 3<n<5.Comment: 11 pages, 6 figures, 1 tabl
Persistent currents in ballistic normal-metal rings
Recent experiments renewed interest in persistent currents in mesoscopic
normal-metal rings. We show that in ballistic rings in high magnetic fields the
Zeeman splitting leads to periodic current quenching with period much larger
than the period of the persistent current. Simple arguments show that this
effect might be relevant for diffusive rings as well. Another aim of this paper
is to discuss fluctuations of the persistent current due to thermal excitation
of high energy levels. Being observed such fluctuations would witness a
coherent state of an electron system at high temperatures when the persistent
current is exponentially suppressed.Comment: Submitted to Special Issue of the international journal Low
Temperature Physics : "Quantum coherent effects in superconductors and normal
metals" devoted to 75-years anniversary of Prof. Igor Kuli
Floquet Formalism of Quantum Pumps
We review Floquet formalism of quantum electron pumps. In the Floquet
formalism the quantum pump is regarded as a time dependent scattering system,
which allows us to go beyond the adiabatic limit. It can be shown that the
well-known adiabatic formula given by Brouwer can be derived from the adiabatic
limit of Floquet formalism. We compare various physical properties of the
quantum pump both in the adiabatic and in the non-adiabatic regime using the
Floquet theory.Comment: Latex2e 16 pages, 6 figures. A review paper to appear in Int. J. Mod.
Phys.
Floquet states and persistent currents transitions in a mesoscopic ring
We consider the effect of an oscillating potential on the single-particle
spectrum and the time-averaged persistent current of a one-dimensional
phase-coherent mesoscopic ring with a magnetic flux. We show that in a ring
with an even number of spinless electrons the oscillating potential has a
strong effect on the persistent current when the excited side bands are close
to the eigen levels of a pure ring. Resonant enhancement of side bands of the
Floquet state generates a sign change of the persistent current.Comment: 2 figure
Quantum pump driven fermionic Mach-Zehnder interferometer
We have investigated the characteristics of the currents in a pump-driven
fermionic Mach-Zehnder interferometer. The system is implemented in a conductor
in the quantum Hall regime, with the two interferometer arms enclosing an
Aharonov-Bohm flux . Two quantum point contacts with transparency
modulated periodically in time drive the current and act as beam-splitters. The
current has a flux dependent part as well as a flux independent
part . Both current parts show oscillations as a function of frequency
on the two scales determined by the lengths of the interferometer arms. In the
non-adiabatic, high frequency regime oscillates with a constant
amplitude while the amplitude of the oscillations of increases
linearly with frequency. The flux independent part is insensitive to
temperature while the flux dependent part is exponentially
suppressed with increasing temperature. We also find that for low amplitude,
adiabatic pumping rectification effects are absent for semitransparent
beam-splitters. Inelastic dephasing is introduced by coupling one of the
interferometer arms to a voltage probe. For a long charge relaxation time of
the voltage probe, giving a constant probe potential, and the part
of flowing in the arm connected to the probe are suppressed with
increased coupling to the probe. For a short relaxation time, with the
potential of the probe adjusting instantaneously to give zero time dependent
current at the probe, only is suppressed by the coupling to the
probe.Comment: 10 pages, 4 figure
Persistent current noise and electron-electron interactions
We analyze fluctuations of persistent current (PC) produced by a charged
quantum particle moving in a ring and interacting with a dissipative
environment formed by diffusive electron gas. We demonstrate that in the
presence of interactions such PC fluctuations persist down to zero temperature.
In the case of weak interactions and/or sufficiently small values of the ring
radius PC noise remains coherent and can be tuned by external magnetic flux
piercing the ring. In the opposite limit of strong interactions and/or
large values of fluctuations in the electronic bath strongly suppress
quantum coherence of the particle down to and induce incoherent
-independent current noise in the ring which persists even at
when the average PC is absent.Comment: 12 pages, 8 figure
Adiabatic quantum pump in the presence of external ac voltages
We investigate a quantum pump which in addition to its dynamic pump
parameters is subject to oscillating external potentials applied to the
contacts of the sample. Of interest is the rectification of the ac currents
flowing through the mesoscopic scatterer and their interplay with the quantum
pump effect. We calculate the adiabatic dc current arising under the
simultaneous action of both the quantum pump effect and classical
rectification. In addition to two known terms we find a third novel
contribution which arises from the interference of the ac currents generated by
the external potentials and the ac currents generated by the pump. The
interference contribution renormalizes both the quantum pump effect and the ac
rectification effect. Analysis of this interference effect requires a
calculation of the Floquet scattering matrix beyond the adiabatic approximation
based on the frozen scattering matrix alone. The results permit us to find the
instantaneous current. In addition to the current generated by the oscillating
potentials, and the ac current due to the variation of the charge of the frozen
scatterer, there is a third contribution which represents the ac currents
generated by an oscillating scatterer. We argue that the resulting pump effect
can be viewed as a quantum rectification of the instantaneous ac currents
generated by the oscillating scatterer. These instantaneous currents are an
intrinsic property of a nonstationary scattering process.Comment: 11 pages, 1 figur
Floquet scattering theory of quantum pumps
We develop the Floquet scattering theory for quantum mechanical pumping in
mesoscopic conductors. The nonequilibrium distribution function, the dc charge
and heat currents are investigated at arbitrary pumping amplitude and
frequency. For mesoscopic samples with discrete spectrum we predict a sign
reversal of the pumped current when the pump frequency is equal to the level
spacing in the sample. This effect allows to measure the phase of the
transmission coefficient through the mesoscopic sample. We discuss the
necessary symmetry conditions (both spatial and temporal) for pumping.Comment: 11 pages, 5 figure
Persistent and radiation-induced currents in distorted quantum rings
Persistent and radiation-induced currents in distorted narrow quantum rings
are theoretically investigated. We show that ring distorsions can be described
using a geometrical potential term. We analyse the effect of this term on the
current induced by a magnetic flux (persistent current) and by a polarized
coherent electromagnetic field (radiation-induced current). The strongest
effects in persistent currents are observed for distorted rings with a small
number of electrons. The distortion smoothes the current oscillations as a
function of the magnetic flux and changes the temperature dependence of the
current amplitude. For radiation-induced currents, the distortion induces an ac
component in the current and affects its dependence on the radiation frequency
and intensity
- …