992 research outputs found

    CELLULAR REQUIREMENTS FOR THE PRIMARY IN VITRO ANTIBODY RESPONSE TO DNP-FICOLL

    Get PDF
    The cellular requirements for the primary in vitro IgM and IgG response to dinitrophenyl-substituted Ficoll were examined. Neither thymus-derived lymphocytes nor macrophage-rich splenic adherent cells were required for anti-DNP antibody synthesis. DNP-Ficoll is therefore tentatively classified as a "thymic-independent" antigen

    Differential Helical Orientations among Related G Protein-coupled Receptors Provide a Novel Mechanism for Selectivity: STUDIES WITH SALVINORIN A AND THE κ-OPIOID RECEPTOR

    Get PDF
    Salvinorin A, the active component of the hallucinogenic sage Salvia divinorum, is an apparently selective and highly potent kappa-opioid receptor (KOR) agonist. Salvinorin A is unique among ligands for peptidergic G protein-coupled receptors in being nonnitrogenous and lipid-like in character. To examine the molecular basis for the subtype-selective binding of salvinorin A, we utilized an integrated approach using chimeric opioid receptors, site-directed mutagenesis, the substituted cysteine accessibility method, and molecular modeling and dynamics studies. We discovered that helix 2 is required for salvinorin A binding to KOR and that two residues (Val-108(2.53) and Val-118(2.63)) confer subtype selectivity. Intriguingly, molecular modeling studies predicted that these loci exhibit an indirect effect on salvinorin A binding, presumably through rotation of helix 2. Significantly, and in agreement with our in silico predictions, substituted cysteine accessibility method analysis of helix 2 comparing KOR and the delta-opioid receptor, which has negligible affinity for salvinorin A, revealed that residues known to be important for salvinorin A binding exhibit a differential pattern of water accessibility. These findings imply that differences in the helical orientation of helix 2 are critical for the selectivity of salvinorin A binding to KOR and provide a structurally novel basis for ligand selectivity

    CoMFA analyses of C-2 position Salvinorin A analogs at the kappa-opioid receptor provides insights into epimer selectivity

    Get PDF
    The highly potent and kappa-opioid receptor (KOR)-selective hallucinogen salvinorin A and selected analogs have been analyzed using the 3D quantitative structure-affinity relationship technique Comparative Molecular Field Analysis (CoMFA) in an effort to derive a statistically significant and predictive model of salvinorin affinity at the KOR and to provide additional statistical support for the validity of previously proposed structure-based interaction models. Two CoMFA models of salvinorin A analogs substituted at the C-2 position are presented. Separate models were developed based on the radioligand used in the kappa-opioid binding assay, [3H]diprenorphine or [125I]6β-iodo-3,14-dihydroxy-17-cyclopropylmethyl-4,5α-epoxymorphinan ([125I]IOXY). For each dataset, three methods of alignment were employed: a receptor-docked alignment derived from the structure-based docking algorithm GOLD, another from the ligand-based alignment algorithm FlexS, and a rigid realignment of the poses from the receptor-docked alignment. The receptor-docked alignment produced statistically superior results compared to either the FlexS alignment or the realignment in both datasets. The [125I]IOXY set (Model 1) and [3H]diprenorphine set (Model 2) gave q2 values of 0.592 and 0.620, respectively, using the receptor-docked alignment, and both models produced similar CoMFA contour maps that reflected the stereoelectronic features of the receptor model from which they were derived. Each model gave significantly predictive CoMFA statistics (Model 1 PSET r2 = 0.833; Model 2 PSET r2 = 0.813). Based on the CoMFA contour maps, a binding mode was proposed for amine-containing salvinorin A analogs that provides a rationale for the observation that the β-epimers (R-configuration) of protonated amines at the C-2 position have a higher affinity than the corresponding β-epimers (S-configuration)

    Methoxy-substituted 9-aminomethyl-9,10-dihydroanthracene (AMDA) derivatives exhibit differential binding affinities at the 5-HT2A receptor

    Get PDF
    The effects of methoxy-substitution at the 1-, 2-, 3- and 4-positions of 9-aminomethyl-9,10-dihydroanthracene (AMDA) on h5-HT2A receptor affinity were determined. Racemic mixtures of these compounds were found to show the following affinity trend: 3-MeO > 4-MeO > 1-MeO ~ 2-MeO. Comparison of the effects of these substitutions, with the aid of computational molecular modeling techniques, suggest that the various positional and stereochemical isomers of the methoxy-substituted AMDA compounds interact differently with the h5-HT2A receptor. It is predicted that for the compounds with higher affinities, the methoxy oxygen atom is able to interact with hydrogen bond-donating sidechains within alternative h5-HT2A receptor binding sites, whereas the lower-affinity isomers lack this ability

    9-Aminomethyl-9,10-dihydroanthracene (AMDA) analogs as structural probes for steric tolerance in 5-HT2A and H1 receptor binding sites

    Get PDF
    Synthesis, radioligand binding and molecular modeling studies of several 9-aminomethyl-9,10-dihydroanthracene (AMDA) analogs were carried out to determine the extent of the steric tolerance associated with expansion of the tricyclic ring system and amine substitution at 5-HT2A and H1 receptors. A mixture of (7,12-dihydrotetraphene-12-yl)methanamine and (6,11-dihydrotetracene-11-yl)methanamine in a 75% to 25% ratio was found to have an apparent Ki of 10 nM at the 5-HT2A receptor. A substantial binding affinity for (7,12-dihydrotetraphene-3-methoxy-12-yl)methanamine at the 5-HT2A receptor (Ki = 21 nM) was also observed. Interestingly, this compound was found to have 100-fold selectivity for 5-HT2A over the H1 receptor (Ki = 2500 nM). N-Phenylalkyl-AMDA derivatives, in which the length of the alkyl chain varied from methylene to n-butylene, were found to have only weak affinity for both 5-HT2A and H1 receptors (Ki = 223 to 964 nM). Our results show that large rigid annulated AMDA analogs can be sterically accommodated within the proposed 5-HT2A binding site

    Potential Modes of Interaction of 9-Aminomethyl-9,10-dihydroanthracene (AMDA) Derivatives with the 5-HT 2A Receptor: A Ligand Structure-Affinity Relationship, Receptor Mutagenesis and Receptor Modeling Investigation

    Get PDF
    The effects of 3-position substitution of 9-aminomethyl-9,10-dihydroanthracene (AMDA) on 5-HT2A receptor affinity were determined and compared to a parallel series of DOB-like 1-(2,5-dimethoxyphenyl)-2-aminopropanes substituted at the 4-position. The results were interpreted within the context of 5-HT2A receptor models that suggest that members of the DOB-like series can bind to the receptor in two distinct modes that correlate with the compounds’ functional activity. Automated ligand docking and molecular dynamics suggest that all of the AMDA derivatives, the parent of which is a 5-HT2A antagonist, bind in a fashion analogous to that for the sterically demanding antagonist DOB-like compounds. The failure of the F3406.52L mutation to adversely affect the affinity of AMDA and the 3-bromo derivative is consistent with the proposed modes of orientation. Evaluation of ligand-receptor complex models suggest that a valine/threonine exchange between the 5-HT2A and D2 receptors may be the origin of selectivity for AMDA and two substituted derivatives

    Synthesis, structure–affinity relationships, and modeling of AMDA analogs at 5-HT2A and H1 receptors: Structural factors contributing to selectivity

    Get PDF
    Histamine H1 and serotonin 5-HT2A receptors present in the CNS have been implicated in various neuropsychiatric disorders. 9-Aminomethyl-9,10-dihydroanthracene (AMDA), a conformationally constrained diarylalkyl amine derivative, has affinity for both of these receptors. A structure-affinity relationship (SAFIR) study was carried out studying the effects of N-methylation, varying the linker chain length and constraint of the aromatic rings on the binding affinities of the compounds with the 5-HT2A and H1 receptors. Homology modeling of the 5-HT2A and H1 receptors suggests that AMDA and its analogs, the parent of which is a 5-HT2A antagonist, can bind in a fashion analogous to that of classical H1 antagonists whose ring systems are oriented towards the fifth and sixth transmembrane helices. The modeled orientation of the ligands are consistent with the reported site-directed mutagenesis data for 5-HT2A and H1 receptors and provide a potential explanation for the selectivity of ligands acting at both receptors

    A Future Large-Aperture UVOIR Space Observatory: Key Technologies and Capabilities

    Get PDF
    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 20 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory
    • …
    corecore