

A Future Large-Aperture UVOIR Space Observatory: **Key Technologies and Capabilities**

Bolcar, Stahle, Balasubramanian, Clampin, Feinberg, Mosier, Quijada, Rauscher, Redding, Rioux, Shaklan, Stahl, Thronson

We identify six key technologies that will enable a future, large-aperture ultraviolet/optical/ infrared (UVOIR) space observatory:

> Starlight Suppression Systems

- Lightweight Mirror Segments
 Sensing & Control Systems
- Vibration Isolation > Detectors
- Mirror Coatings

contrast imaging.

These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and high-

We present the top-level science requirements flow-down to both the telescope and a notional instrument suite (Tables 1 & 2). pending engineering trade studies and further definition of the mission science goals and requirements.

For each technology area, a gap analysis is presented in the context of a design reference missions consisting of a 10-m class segmented aperture telescope with an internal coronagraph for exoplanet science.

able 1 – Science Requirements Flow-Down to Telescope							
Parameter		Requirement	Stretch Goal	Traceability			
Primary Mirror Aperture		≥ 8 meters	12 meters	Sensitivity Exoplanet Yield			
Telescope Temperature		273 K – 293 K	-	Thermal Stability Ground Testing			
	UV	100 nm - 300 nm	90 nm - 300 nm				
Wavelength Coverage	Vis	300 nm - 950 nm	-				
	NIR	950 nm – 1.8 µm	950 nm - 2.5 µm				
	MIR	-	Capability Under Evaluation				
Image	UV	< 0.20 arcsec at 150 nm					
Quality	Vis/NIR/MIR	Diffraction-limited at 500 nm					
Stray Light		Zodi-limited between 400 nm – 1.8 µm					
Wavefront Error Stability (for Exoplanet Science)		< 10 pm RMS uncorrected WFE per control step					
Poir	nting	1 milli-arcsec					

Table 2 – Science Requirements Flow-Down to Notional Instrument Suite, pending engineering trade studies and further definition of the mission science goals and requirements.

	Wavelength Range	100 nm (90 nm goal) - 300 nm				
UV Imager / Multi-Object	Field-of-View	1 – 2 arcmin				
Spectrograph	Image Resolution	< 0.20 arcsec				
	Spectral Resolution	R = 20,000 - 300,000 (selectable modes)				
	Wavelength Range	300 nm – 950 nm				
Vis Imager / Multi-Object	Field-of-View	4 – 8 arcmin				
Spectrograph	Image Resolution	Nyquist sampled at 500 nm				
	Spectral Resolution	R = 100 - 10,000 (selectable modes)				
	Wavelength Range	950 nm – 1.8 μm (2.5 μm goal)				
NIR Imager / Multi-Object	Field-of-View	3 – 4 arcmin				
Spectrograph	Image Resolution	Nyquist sampled at 950 nm				
	Spectral Resolution	R = 100 - 10,000 (selectable modes)				
	Wavelength Range	2.5 μm – 8 μm				
MIR Imagor / Epoctrograph	Field-of-View	3 – 4 arcmin				
Mik imager / Spectrograph	Image Resolution	Nyquist sampled at 2.5 µm				
	Spectral Resolution	R = 5 - 500 (selectable modes)				
	Wavelength Range	400 nm – 1.8 μm				
	Raw Contrast	10-10				
Starlight Suppression System	Contrast Stability	10 ⁻¹¹ over an observation				
	Inner-working Angle	20 milli-arcsec @ 400 nm				
	Outer-working Angle	1 arcsec @ 400 nm				
Multi Rand Exercise at Imager	Field-of-View	~ 1 arcsec				
Huid-band Exoplanet Imager	Image Resolution	Nyquist sampled at 500 nm				
Evenlanet Enectrograph	Field-of-View	~ 1 arcsec				
Exoplanet Spectrograph	Spectral Resolution	R = 70 - 500 (selectable modes)				

Starlight Suppression System

Gap Title	Capability Needed	Capability Today
Contrast Performance	1×10^{-10} raw contrast, 1×10^{-11} contrast stability between $2\lambda/D$ and $100\lambda/D$.	1.3×10^{-10} raw contrast between 3 λ/D and 16 λ/D for an internal coronagraph. 4×10^{-10} raw contrast prediction for starshade at non-Flight Fresnel number, excluding edge reflections.
Bandpass	Meet contrast requirement between 400 nm – 1.8 µm.	1.3x10 ⁻¹⁰ raw contrast between 700 nm - 880 nm.
Segmented Aperture Performance	Meet contrast requirement with obscured, segmented aperture.	5.7x10 ⁻⁹ narrowband raw contrast with a hexagonally- segmented deformable mirror. Active Control of Aperture Discontinuities (ACAD) simulations indicate 3x10 ⁹ contrast over 30% bandwidth with apodizing masks.
Starshade Edge Scatter	Edges manufactured of high flexural strength material with edge radius $\leq 1 \ \mu m$.	Graphite edges meet specs except for edge radius at \geq 10 µm. Razor blades meet optical requirements but are not stowable.
Starshade Formation Flight	Sensors demonstrated with errors ≤ 0.25 m. Control algorithms demonstrated with lateral control errors ≤ 1 m.	Simulations have shown that sensing and GN&C is tractable, though sensing demonstrations of lateral control has not yet been performed.
Starshade Petal Construction & Deployment	Demonstrate a fully integrated petal, including blankets, edges, and deployment control interfaces.	Low-fidelity petals have been assembled and precision petal manufacturing has been demonstrated.
Starshade Truss Construction & Deployment	Demonstrate the budgeted in- plane deployment tolerances (~1 mm to < 1 mm) using a half-scale or larger prototype.	Millimeter-wave mesh antennas have been deployed in space with diameters up to 17 m × 19 m and a out-of- plane accuracy of 2.4 mm.
Model Validation	Models and error budgets of starlight suppression architectures, validated to the 1x10 ⁻¹¹ raw contrast level, including thermal & dynamic effects, relevant Fresnel numbers, and a dynamic wavefront	Error budget tool that incorporates apodizing coronagraphs, but not nullers. Does not include segment-to-segment dynamics. Models for various architectures exist, but are not yet fully correlated to testbed results to the 1x10 ⁻¹¹ level

Ligh	tweight	Mirror	Se	gments
p Title	Capabili	ty Needed		Capability Today

Gap Title	Capability Needed	Capability Today
Mirror Static Surface Figure Error	< 7 nm RMS Total: 5 nm RMS Low Spatial Freq. 5 nm RMS Mid Spatial Freq. 1.5 nm RMS High Spatial Freq. 1 nm RMS Surface Roughness	~25 nm RMS total (JWST ~7 nm RMS total (HST)
Wavefront Error Stability	< 10 pm RMS total per control step: < 7 pm RMS mechanical < 7 pm RMS thermal	~70 nm RMS total per 14 days (JWST)
real Density	< 36 kg/m ² for existing launch vehicles < 500 kg/m ² for planned (SLS)	70 kg/m² (JWST) 460 kg/m² (HST)
Areal Cost	< \$2M/m ²	~\$6M/m ² (JWST) ~\$12M/m ² (HST)
Areal Production Rate	> 10 m ² /year	~4 m ² /year (JWST) ~1 m ² /year (HST)

Vibration Isolation

Gap Title	Capability Needed	Capability Today		
Active Vibration Isolation	140 dB attenuation > 40 Hz	80 dB attenuation > 40 Hz (JWST)		
Low Disturbance RWA & Mounts		0.48 g-cm static 13.7 g-cm² dynamic		
Integrated Modeling	High-fidelity, multidisciplinary design & modeling tools, supporting efficient analysis methods	Cross-discipline modeling tools are incompatible. Multi-week/month turn-around time on design iterations.		

De	etector Sy	stems	
p Title	Capability Needed	Capability Today	Gap
/isible- l ctors	>50% Q.E. between 90 nm – 350 nm <5 e ⁻ read noise >4 Mpixel	5-20% Q.E. between 150 nm – 300 nm <5 e ⁻ read noise 1 Mpixel	UV Coa Reflecti
le/NIR on	>80% Q.E. between 400 nm - 1.7 µm	> 60% Q.E. between 300 nm - 750 nm ~1 e- read noise	UV Coa Uniforn
ctors	<0.001 e-/pix/s dark current	~0.001 e-/pix/s dark current	UV Coa Polariza

Ga

UV, Blin Dete

Visit Phot Cour Dete

Sensing & Control Systems

Gap Title	Capability Needed	Capability roday		
Mirror Thermal Control System	0.01 mK sensor precision < 1 mK heater precision	???		
Autonomous Onboard Processing	Control bandwidths ~ Hz > 100 GFLOPS/W	Control once per 14 days (JWST) < 20 GFLOPS/W (SpaceCube 1.0)		
Deformable Mirrors	> 4000 actuators (DOFs) Routine 100% yield Environmentally qualified	4096 actuators (continuous) 501 actuators (segmented) < 100% yield Some environmental testing performed		
Mirror Position Metrology	<1 pm accuracy	~1 nm accuracy		
Mirror Actuators	~1 pm accuracy	~5 nm accuracy		
irisA J Dej	0 167-Segement Piston-Tip-Tilt formable Mirror	Xinetics 48x48 Continuous Foce Sheet Deformable Mirror		

STREET, STREET

<1% at

Mirror Coatings Capability Needed Capability Today itle 85% at wavelengths 180 nm - 300 nm 60% at wavelengths 90 nm - 180 nm >90% at wavelengths ≥ 90 nm <1 - 0.1% at wavelengths ≥ 90 nm 1% at wavelengths ≥ 90 nm iting nity

Coating arization		< w 90	avel nm	at engt I	hs ≥	1 9	% a 0 nn	t wa n	vele	ngths
	10 F						Al + Spin Al	DMgF,		_
	4.9			-	-	-				
	4.8		- F	1			2hmMpf			
	67		1.	i						200
ž	- 6.6		17		· · · ·			and the		
ų.	0.5		1+							
1	- 64		11		***	_	2mm Mg#2 (inald)		
-	a.		11			-	State of the			
	- 6.2 🛣	-					anter			
	41						11.58			
	L			-			-		-	
	90	×50		aveleng	.10 th (nm)		, 50	-50	270	