63 research outputs found

    Mechanisms for minimizing height-related stomatal conductance declines in tall vines

    Get PDF
    The ability to transport water through tall stems hydraulically limits stomatal conductance (g(s)), thereby constraining photosynthesis and growth. However, some plants are able to minimize this height-related decrease in g(s), regardless of path length. We hypothesized that kudzu (Pueraria lobata) prevents strong declines in g(s) with height through appreciable structural and hydraulic compensative alterations. We observed only a 12% decline in maximum g(s) along 15-m-long stems and were able to model this empirical trend. Increasing resistance with transport distance was not compensated by increasing sapwood-to-leaf-area ratio. Compensating for increasing leaf area by adjusting the driving force would require water potential reaching -1.9 MPa, far below the wilting point (-1.2 MPa). The negative effect of stem length was compensated for by decreasing petiole hydraulic resistance and by increasing stem sapwood area and water storage, with capacitive discharge representing 8-12% of the water flux. In addition, large lateral (petiole, leaves) relative to axial hydraulic resistance helped improve water flow distribution to top leaves. These results indicate that g(s) of distal leaves can be similar to that of basal leaves, provided that resistance is highest in petioles, and sufficient amounts of water storage can be used to subsidize the transpiration stream.Peer reviewe

    LogSpin: a simple, economical and fast method for RNA isolation from infected or healthy plants and other eukaryotic tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rapid RNA extraction is commonly performed with commercial kits, which are very expensive and can involve toxic reagents. Most of these kits can be used with healthy plant tissues, but do not produce consistently high-quality RNA from necrotic fungus-infected tissues or fungal mycelium.</p> <p>Findings</p> <p>We report on the development of a rapid and relatively inexpensive method for total RNA extraction from plants and fungus-infected tissues, as well as from insects and fungi, based on guanidine hydrochloride buffer and common DNA extraction columns originally used for the extraction and purification of plasmids and cosmids.</p> <p>Conclusions</p> <p>The proposed method can be used reproducibly for RNA isolation from a variety of plant species. It can also be used with infected plant tissue and fungal mycelia, which are typically recalcitrant to standard nucleic acid extraction procedures.</p

    Relationship between Hexokinase and the Aquaporin PIP1 in the Regulation of Photosynthesis and Plant Growth

    Get PDF
    Increased expression of the aquaporin NtAQP1, which is known to function as a plasmalemma channel for CO2 and water, increases the rate of both photosynthesis and transpiration. In contrast, increased expression of Arabidopsis hexokinase1 (AtHXK1), a dual-function enzyme that mediates sugar sensing, decreases the expression of photosynthetic genes and the rate of transpiration and inhibits growth. Here, we show that AtHXK1 also decreases root and stem hydraulic conductivity and leaf mesophyll CO2 conductance (gm). Due to their opposite effects on plant development and physiology, we examined the relationship between NtAQP1 and AtHXK1 at the whole-plant level using transgenic tomato plants expressing both genes simultaneously. NtAQP1 significantly improved growth and increased the transpiration rates of AtHXK1-expressing plants. Reciprocal grafting experiments indicated that this complementation occurs when both genes are expressed simultaneously in the shoot. Yet, NtAQP1 had only a marginal effect on the hydraulic conductivity of the double-transgenic plants, suggesting that the complementary effect of NtAQP1 is unrelated to shoot water transport. Rather, NtAQP1 significantly increased leaf mesophyll CO2 conductance and enhanced the rate of photosynthesis, suggesting that NtAQP1 facilitated the growth of the double-transgenic plants by enhancing mesophyll conductance of CO2

    Role of Aquaporins in a Composite Model of Water Transport in the Leaf

    No full text
    Water-transport pathways through the leaf are complex and include several checkpoints. Some of these checkpoints exhibit dynamic behavior that may be regulated by aquaporins (AQPs). To date, neither the relative weight of the different water pathways nor their molecular mechanisms are well understood. Here, we have collected evidence to support a putative composite model of water pathways in the leaf and the distribution of water across those pathways. We describe how water moves along a single transcellular path through the parenchyma and continues toward the mesophyll and stomata along transcellular, symplastic and apoplastic paths. We present evidence that points to a role for AQPs in regulating the relative weight of each path in the overall leaf water-transport system and the movement of water between these paths as a result of the integration of multiple signals, including transpiration demand, water potential and turgor. We also present a new theory, the hydraulic fuse theory, to explain effects of the leaf turgor-loss-point on water paths alternation and the subsequent reduction in leaf hydraulic conductivity. An improved understating of leaf water-balance management may lead to the development of crops that use water more efficiently, and responds better to environmental changes
    • …
    corecore