29 research outputs found

    Spatial and temporal variation in malaria transmission in a low endemicity area in northern Tanzania

    Get PDF
    BACKGROUND: Spatial and longitudinal monitoring of transmission intensity will allow better targeting of malaria interventions. In this study, data on meteorological, demographic, entomological and parasitological data over the course of a year was collected to describe malaria epidemiology in a single village of low transmission intensity. METHODS: Entomological monitoring of malaria vectors was performed by weekly light trap catches in 10 houses. Each house in the village of Msitu wa Tembo, Lower Moshi, was mapped and censused. Malaria cases identified through passive case detection at the local health centre were mapped by residence using GIS software and the incidence of cases by season and distance to the main breeding site was calculated. RESULTS: The principle vector was Anopheles arabiensis and peak mosquito numbers followed peaks in recent rainfall. The entomological inoculation rate estimated was 3.4 (95% CI 0.7–9.9) infectious bites per person per year. The majority of malaria cases (85/130) occurred during the rainy season (χ(2 )= 62,3, p < 0.001). Living further away from the river (OR 0.96, CI 0.92–0.998, p = 0.04 every 50 m) and use of anti-insect window screens (OR 0.65, CI 0.44–0.94, p = 0.023) were independent protective factors for the risk of malaria infection. Children aged 1–5 years and 5–15 years were at greater risk of clinical episodes (OR 2.36, CI 1.41–3.97, p = 0.001 and OR 3.68, CI 2.42–5.61, p < 0.001 respectively). CONCLUSION: These data show that local malaria transmission is restricted to the rainy season and strongly associated with proximity to the river. Transmission reducing interventions should, therefore, be timed before the rain-associated increase in mosquito numbers and target households located near the river

    Change in Composition of the Anopheles Gambiae Complex and its Possible Implications for the Transmission of Malaria and Lymphatic Filariasis in North-Eastern Tanzania.

    Get PDF
    A dramatic decline in the incidence of malaria due to Plasmodium falciparum infection in coastal East Africa has recently been reported to be paralleled (or even preceded) by an equally dramatic decline in malaria vector density, despite absence of organized vector control. As part of investigations into possible causes for the change in vector population density, the present study analysed the Anopheles gambiae s.l. sibling species composition in north-eastern Tanzania. The study was in two parts. The first compared current species complex composition in freshly caught An. gambiae s.l. complex from three villages to the composition reported from previous studies carried out 2-4 decades ago in the same villages. The second took advantage of a sample of archived dried An. gambiae s.l. complex specimens collected regularly from a fourth study village since 2005. Both fresh and archived dried specimens were identified to sibling species of the An. gambiae s.l. complex by PCR. The same specimens were moreover examined for Plasmodium falciparum and Wuchereria bancrofti infection by PCR. As in earlier studies, An. gambiae s.s., Anopheles merus and Anopheles arabiensis were identified as sibling species found in the area. However, both study parts indicated a marked change in sibling species composition over time. From being by far the most abundant in the past An. gambiae s.s. was now the most rare, whereas An. arabiensis had changed from being the most rare to the most common. P. falciparum infection was rarely detected in the examined specimens (and only in An. arabiensis) whereas W. bancrofti infection was prevalent and detected in all three sibling species. The study indicates that a major shift in An. gambiae s.l. sibling species composition has taken place in the study area in recent years. Combined with the earlier reported decline in overall malaria vector density, the study suggests that this decline has been most marked for An. gambiae s.s., and least for An. arabiensis, leading to current predominance of the latter. Due to differences in biology and vectorial capacity of the An. gambiae s.l. complex the change in sibling species composition will have important implications for the epidemiology and control of malaria and lymphatic filariasis in the study area

    Indoor application of attractive toxic sugar bait (ATSB) in combination with mosquito nets for control of pyrethroid-resistant mosquitoes.

    Get PDF
    BACKGROUND: Attractive toxic sugar bait (ATSB) sprayed onto vegetation has been successful in controlling Anopheles mosquitoes outdoors. Indoor application of ATSB has yet to be explored. The purpose of this study was to determine whether ATSB stations positioned indoors have the potential to kill host-seeking mosquitoes and constitute a new approach to control of mosquito-borne diseases. METHODS: Insecticides were mixed with dyed sugar solution and tested as toxic baits against Anopheles arabiensis, An. Gambiae s.s. and Culex quinquefasciatus in feeding bioassay tests to identify suitable attractant-insecticide combinations. The most promising ATSB candidates were then trialed in experimental huts in Moshi, Tanzania. ATSB stations were hung in huts next to untreated mosquito nets occupied by human volunteers. The proportions of mosquitoes killed in huts with ATSB treatments relative to huts with non-insecticide control treatments huts were recorded, noting evidence of dye in mosquito abdomens. RESULTS: In feeding bioassays, chlorfenapyr 0.5% v/v, boric acid 2% w/v, and tolfenpyrad 1% v/v, mixed in a guava juice-based bait, each killed more than 90% of pyrethroid-susceptible An. Gambiae s.s. and pyrethroid-resistant An. arabiensis and Cx. quinquefasciatus. In the hut trial, mortality rates of the three ATSB treatments ranged from 41-48% against An. arabiensis and 36-43% against Cx. quinquefasciatus and all were significantly greater than the control mortalities: 18% for An. arabiensis, 7% for Cx. quinquefasciatus (p<0.05). Mortality rates with ATSB were comparable to those with long lasting insecticidal nets previously tested against the same species in this area. CONCLUSIONS: Indoor ATSB shows promise as a supplement to mosquito nets for controlling mosquitoes. Indoor ATSB constitute a novel application method for insecticide classes that act as stomach poisons and have not hitherto been exploited for mosquito control. Combined with LLIN, indoor use of ATSB has the potential to serve as a strategy for managing insecticide resistance

    Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Anopheles gambiae </it>and <it>Anopheles funestus </it>mosquito species complexes are the primary vectors of <it>Plasmodium falciparum </it>malaria in sub-Saharan Africa. To better understand the environmental factors influencing these species, the abundance, distribution and transmission data from a south-eastern Kenyan study were retrospectively analysed, and the climate, vegetation and elevation data in key locations compared.</p> <p>Methods</p> <p>Thirty villages in Malindi, Kilifi and Kwale Districts with data on <it>An. gambiae sensu strict</it>, <it>Anopheles arabiensis</it> and <it>An. funestus</it> entomological inoculation rates (EIRs), were used as focal points for spatial and environmental analyses. Transmission patterns were examined for spatial autocorrelation using the Moran's <it>I </it>statistic, and for the clustering of high or low EIR values using the Getis-Ord Gi* statistic. Environmental data were derived from remote-sensed satellite sources of precipitation, temperature, specific humidity, Normalized Difference Vegetation Index (NDVI), and elevation. The relationship between transmission and environmental measures was examined using bivariate correlations, and by comparing environmental means between locations of high and low clustering using the Mann-Whitney <it>U </it>test.</p> <p>Results</p> <p>Spatial analyses indicated positive autocorrelation of <it>An. arabiensis </it>and <it>An. funestus </it>transmission, but not of <it>An. gambiae s.s</it>., which was found to be widespread across the study region. The spatial clustering of high EIR values for <it>An. arabiensis </it>was confined to the lowland areas of Malindi, and for <it>An. funestus </it>to the southern districts of Kilifi and Kwale. Overall, <it>An. gambiae s.s</it>. and <it>An. arabiensis </it>had similar spatial and environmental trends, with higher transmission associated with higher precipitation, but lower temperature, humidity and NDVI measures than those locations with lower transmission by these species and/or in locations where transmission by <it>An. funestus </it>was high. Statistical comparisons indicated that precipitation and temperatures were significantly different between the <it>An. arabiensis </it>and <it>An. funestus </it>high and low transmission locations.</p> <p>Conclusion</p> <p>These finding suggest that the abundance, distribution and malaria transmission of different malaria vectors are driven by different environmental factors. A better understanding of the specific ecological parameters of each malaria mosquito species will help define their current distributions, and how they may currently and prospectively be affected by climate change, interventions and other factors.</p

    Malaria prevention in north-eastern Tanzania: patterns of expenditure and determinants of demand at the household level

    Get PDF
    OBJECTIVE: This study aims to provide a better understanding of the amounts spent on different malaria prevention products and the determinants of these expenditures. METHODS: 1,601 households were interviewed about their expenditure on malaria mosquito nets in the past five years, net re-treatments in the past six months and other expenditures prevention in the past two weeks. Simple random sampling was used to select villages and streets while convenience sampling was used to select households. Expenditure was compared across bed nets, aerosols, coils, indoor spraying, using smoke, drinking herbs and cleaning outside environment. FINDINGS: 68% of households owned at least one bed net and 27% had treated their nets in the past six months. 29% were unable to afford a net. Every fortnight, households spent an average of US 0.18onnetsandtheirtreatment,constitutingabout470.18 on nets and their treatment, constituting about 47% of total prevention expenditure. Sprays, repellents and coils made up 50% of total fortnightly expenditure (US0.21). Factors positively related to expenditure were household wealth, years of education of household head, household head being married and rainy season. Poor quality roads and living in a rural area had a negative impact on expenditure. CONCLUSION: Expenditure on bed nets and on alternative malaria prevention products was comparable. Poor households living in rural areas spend significantly less on all forms of malaria prevention compared to their richer counterparts. Breaking the cycle between malaria and poverty is one of the biggest challenges facing malaria control programmes in Africa

    Malaria control under the Taliban regime: insecticide-treated net purchasing, coverage, and usage among men and women in eastern Afghanistan

    Get PDF
    BACKGROUND: Scaling up insecticide-treated mosquito net (ITN) coverage is a key malaria control strategy even in conflict-affected countries 12. Socio-economic factors influence access to ITNs whether subsidized or provided free to users. This study examines reported ITN purchasing, coverage, and usage in eastern Afghanistan and explores women's access to health information during the Taliban regime (1996-2001). This strengthens the knowledge base on household-level health choices in complex-emergency settings. METHODS: Fifteen focus group discussions (FGDs) and thirty in-depth interviews were conducted with men and women from ITN-owning and non-owning households. FGDs included rank ordering, pile sorting and focused discussion of malaria knowledge and ITN purchasing. Interviews explored general health issues, prevention and treatment practices, and women's malaria knowledge and concerns. Seven key informant interviews with health-related workers and a concurrent survey of 200 ITN-owning and 214 non-owning households were used to clarify or quantify findings. RESULTS: Malaria knowledge was similar among men and women and ITN owners and non-owners. Women reported obtaining health information through a variety of sources including clinic staff, their husbands who had easier access to information, and particularly female peers. Most participants considered ITNs very desirable, though not usually household necessities. ITN owners reported more household assets than non-owners. Male ITN owners and non-owners ranked rugs and ITNs as most desired, while women ranked personal assets such as jewellery highest. While men were primarily responsible for household decision-making and purchasing, older women exerted considerable influence. Widow-led and landless households reported most difficulties purchasing ITNs. Most participants wanted to buy ITNs only if they could cover all household members. When not possible, preferential usage was given to women and children. CONCLUSIONS: Despite restricted access to health facilities and formal education, Afghan women were surprisingly knowledgeable about the causes of malaria and the value of ITNs in prevention. Inequities in ITN usage were noted between rather than within households, with some unable to afford even one ITN and others not wanting ITNs unless all household members could be protected. Malaria knowledge thus appears a lesser barrier to ITN purchasing and coverage in eastern Afghanistan than are pricing and distribution strategies

    A Modified Experimental Hut Design for Studying Responses of Disease-Transmitting Mosquitoes to Indoor Interventions: The Ifakara Experimental Huts

    Get PDF
    Differences between individual human houses can confound results of studies aimed at evaluating indoor vector control interventions such as insecticide treated nets (ITNs) and indoor residual insecticide spraying (IRS). Specially designed and standardised experimental huts have historically provided a solution to this challenge, with an added advantage that they can be fitted with special interception traps to sample entering or exiting mosquitoes. However, many of these experimental hut designs have a number of limitations, for example: 1) inability to sample mosquitoes on all sides of huts, 2) increased likelihood of live mosquitoes flying out of the huts, leaving mainly dead ones, 3) difficulties of cleaning the huts when a new insecticide is to be tested, and 4) the generally small size of the experimental huts, which can misrepresent actual local house sizes or airflow dynamics in the local houses. Here, we describe a modified experimental hut design - The Ifakara Experimental Huts- and explain how these huts can be used to more realistically monitor behavioural and physiological responses of wild, free-flying disease-transmitting mosquitoes, including the African malaria vectors of the species complexes Anopheles gambiae and Anopheles funestus, to indoor vector control-technologies including ITNs and IRS. Important characteristics of the Ifakara experimental huts include: 1) interception traps fitted onto eave spaces and windows, 2) use of eave baffles (panels that direct mosquito movement) to control exit of live mosquitoes through the eave spaces, 3) use of replaceable wall panels and ceilings, which allow safe insecticide disposal and reuse of the huts to test different insecticides in successive periods, 4) the kit format of the huts allowing portability and 5) an improved suite of entomological procedures to maximise data quality

    Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future

    Get PDF
    Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are currently the preferred methods of malaria vector control. In many cases, these methods are used together in the same households, especially to suppress transmission in holoendemic and hyperendemic scenarios. Though widespread, there has been limited evidence suggesting that such co-application confers greater protective benefits than either ITNs or IRS when used alone. Since both methods are insecticide-based and intradomicilliary, this article hypothesises that outcomes of their combination would depend on effects of the candidate active ingredients on mosquitoes that enter or those that attempt to enter houses. It is suggested here that enhanced household level protection can be achieved if the ITNs and IRS have divergent yet complementary properties, e.g. highly deterrent IRS compounds coupled with highly toxic ITNs. To ensure that the problem of insecticide resistance is avoided, the ITNs and IRS products should preferably be of different insecticide classes, e.g. pyrethroid-based nets combined with organophosphate or carbamate based IRS. The overall community benefits would however depend also on other factors such as proportion of people covered by the interventions and the behaviour of vector species. This article concludes by emphasizing the need for basic and operational research, including mathematical modelling to evaluate IRS/ITN combinations in comparison to IRS alone or ITNs alone

    Malaria in Africa: Vector Species' Niche Models and Relative Risk Maps

    Get PDF
    A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275 cells of approximately 4 sq km). Using a maximum entropy method we construct niche models for 10 malaria vector species based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes). For seven vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis) these are the first published niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A. quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of previous models. The results of the niche models are incorporated into three relative risk models which assume different ecological interactions between vector species. The “additive” model assumes no interaction; the “minimax” model assumes maximum relative risk due to any vector in a cell; and the “competitive exclusion” model assumes the relative risk that arises from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human population density. Relative risk maps are produced from these models. All models predict that human population density is the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol developed here can be used for any other vector-borne disease
    corecore