8 research outputs found
Immunogenicity and safety of fractional doses of 17D-213 yellow fever vaccine in HIV-infected people in Kenya (YEFE): a randomised, double-blind, non-inferiority substudy of a phase 4 trial
Background Evidence indicates that fractional doses of yellow fever vaccine are safe and sufficiently immunogenic for use during yellow fever outbreaks. However, there are no data on the generalisability of this observation to populations living with HIV. Therefore, we aimed to evaluate the immunogenicity of fractional and standard doses of yellow fever vaccine in HIV-positive adults.
Methods We conducted a randomised, double-blind, non-inferiority substudy in Kilifi, coastal Kenya to compare the immunogenicity and safety of a fractional dose (one-fifth of the standard dose) versus the standard dose of 17D-213 yellow fever vaccine among HIV-positive volunteers. HIV-positive participants aged 18–59 years, with baseline CD4+ T-cell count of at least 200 cells per mL, and who were not pregnant, had no previous history of yellow fever vaccination or infection, and had no contraindication for yellow fever vaccination were recruited from the community. Participants were randomly assigned 1:1 in blocks (variable block sizes) to either a fractional dose or a standard dose of the 17D-213 yellow fever vaccine. Vaccines were administered subcutaneously by an unblinded nurse and pharmacist; all other study personnel were blinded to the vaccine allocation. The primary outcome of the study was the proportion of participants who seroconverted by the plaque reduction neutralisation test (PRNT50) 28 days after vaccination for the fractional dose versus the standard dose in the per-protocol population. Secondary outcomes were assessment of adverse events and immunogenicity during the 1-year follow-up period. Participants were considered to have seroconverted if the post-vaccination antibody titre was at least 4 times greater than the pre-vaccination titre. We set a non-inferiority margin of not less than a 17% decrease in seroconversion in the fractional dose compared with the standard dose. This study is registered with ClinicalTrials.gov, NCT02991495.
Findings Between Jan 29, 2019, and May 17, 2019, 303 participants were screened, and 250 participants were included and vaccinated; 126 participants were assigned to the fractional dose and 124 to the standard dose. 28 days after vaccination, 112 (96%, 95% CI 90–99) of 117 participants in the fractional dose group and 115 (98%, 94–100) of 117 in the standard dose group seroconverted by PRNT50. The difference in seroconversion between the fractional dose and the standard dose was –3% (95% CI –7 to 2). Fractional dosing therefore met the non-inferiority criterion, and non-inferiority was maintained for 1 year. The most common adverse events were headache (n=31 [12%]), fatigue (n=23 [9%]), myalgia (n=23 [9%]), and cough (n=14 [6%]). Reported adverse events were either mild (182 [97%] of 187 adverse events) or moderate (5 [3%]) and were self-limiting.
Interpretation Fractional doses of the 17D-213 yellow fever vaccine were sufficiently immunogenic and safe demonstrating non-inferiority to the standard vaccine dose in HIV-infected individuals with CD4+ T cell counts of at least 200 cells per mL. These results provide confidence that fractional dose recommendations are applicable to populations with high HIV prevalence.
Funding Wellcome Trust, Médecins Sans Frontières Foundation, and the UK Department for International Development
Expression of Plasmodium falciparum genes involved in erythrocyte invasion varies among isolates cultured directly from patients.
Plasmodium falciparum merozoites invade erythrocytes using a range of alternative ligands that includes erythrocyte binding antigenic proteins (EBAs) and reticulocyte binding protein homologues (Rh). Variation in the expression of some of these genes among culture-adapted parasite lines correlates with the use of different erythrocyte receptors. Here, expression profiles of four Rh genes and eba175 are analysed in a sample of 42 isolates cultured from malaria patients in Kenya. The profiles cluster into distinct groups, largely because of very strong negative correlations between the levels of expression of particular gene pairs (Rh1 versus Rh2b, eba175 versus Rh2b, and eba175 versus Rh4), previously associated with alternative invasion pathways in culture-adapted parasite lines. High levels of eba175 are seen in isolates in expression profile group I, and may be associated with sialic acid-dependent invasion. Groups II and III are, respectively, characterized by high levels of Rh2b and Rh4, and are more likely to be associated with sialic acid-independent invasion
Declining Responsiveness of Plasmodium falciparum Infections to Artemisinin-Based Combination Treatments on the Kenyan Coast
BACKGROUND: The emergence of artemisinin-resistant P. falciparum malaria in South-East Asia highlights the need for continued global surveillance of the efficacy of artemisinin-based combination therapies. METHODS: On the Kenyan coast we studied the treatment responses in 474 children 6–59 months old with uncomplicated P. falciparum malaria in a randomized controlled trial of dihydroartemisinin-piperaquine vs. artemether-lumefantrine from 2005 to 2008. (ISRCTN88705995) RESULTS: The proportion of patients with residual parasitemia on day 1 rose from 55% in 2005–2006 to 87% in 2007–2008 (odds ratio, 5.4, 95%CI, 2.7–11.1; P<0.001) and from 81% to 95% (OR, 4.1, 95%CI, 1.7–9.9; P = 0.002) in the DHA-PPQ and AM-LM groups, respectively. In parallel, Kaplan-Meier estimated risks of apparent recrudescent infection by day 84 increased from 7% to 14% (P = 0.1) and from 6% to 15% (P = 0.05) with DHA-PPQ and AM-LM, respectively. Coinciding with decreasing transmission in the study area, clinical tolerance to parasitemia (defined as absence of fever) declined between 2005–2006 and 2007–2008 (OR body temperature >37.5°C, 2.8, 1.9–4.1; P<0.001). Neither in vitro sensitivity of parasites to DHA nor levels of antibodies against parasite extract accounted for parasite clearance rates or changes thereof. CONCLUSIONS: The significant, albeit small, decline through time of parasitological response rates to treatment with ACTs may be due to the emergence of parasites with reduced drug sensitivity, to the coincident reduction in population-level clinical immunity, or both. Maintaining the efficacy of artemisinin-based therapy in Africa would benefit from a better understanding of the mechanisms underlying reduced parasite clearance rates. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN8870599
BIRC6 modifies risk of invasive bacterial infection in Kenyan children.
Invasive bacterial disease is a major cause of morbidity and mortality in African children. Despite being caused by diverse pathogens, children with sepsis are clinically indistinguishable from one another. In spite of this, most genetic susceptibility loci for invasive infection that have been discovered to date are pathogen specific and are not therefore suggestive of a shared genetic architecture of bacterial sepsis. Here, we utilise probabilistic diagnostic models to identify children with a high probability of invasive bacterial disease among critically unwell Kenyan children with Plasmodium falciparum parasitaemia. We construct a joint dataset including 1445 bacteraemia cases and 1143 severe malaria cases, and population controls, among critically unwell Kenyan children that have previously been genotyped for human genetic variation. Using these data, we perform a cross-trait genome-wide association study of invasive bacterial infection, weighting cases according to their probability of bacterial disease. In doing so, we identify and validate a novel risk locus for invasive infection secondary to multiple bacterial pathogens, that has no apparent effect on malaria risk. The locus identified modifies splicing of BIRC6 in stimulated monocytes, implicating regulation of apoptosis and autophagy in the pathogenesis of sepsis in Kenyan children