4,548 research outputs found
PVEX: An expert system for producibility/value engineering
PVEX is described as an expert system that solves the problem of selection of the material and process in missile manufacturing. The producibility and the value problem has been deeply studied in the past years, and was written in dBase III and PROLOG before. A new approach is presented in that the solution is achieved by introducing hypothetical reasoning, heuristic criteria integrated with a simple hypertext system and shell programming. PVEX combines KMS with Unix scripts which graphically depicts decision trees. The decision trees convey high level qualitative problem solving knowledge to users, and a stand-alone help facility and technical documentation is available through KMS. The system developed is considerably less development costly than any other comparable expert system
Aerodynamic loads on deployed canard surfaces and rocket nose section of the Apollo launch escape vehicle
Aerodynamic loads on deployed canard surfaces and rocket nose section of Apollo launch escape vehicl
New measurements of cosmic infrared background fluctuations from early epochs
Cosmic infrared background fluctuations may contain measurable contribution
from objects inaccessible to current telescopic studies, such as the first
stars and other luminous objects in the first Gyr of the Universe's evolution.
In an attempt to uncover this contribution we have analyzed the GOODS data
obtained with the Spitzer IRAC instrument, which are deeper and cover larger
scales than the Spitzer data we have previously analyzed. Here we report these
new measurements of the cosmic infrared background (CIB) fluctuations remaining
after removing cosmic sources to fainter levels than before. The remaining
anisotropies on scales > 0.5 arcmin have a significant clustering component
with a low shot-noise contribution. We show that these fluctuations cannot be
accounted for by instrumental effects, nor by the Solar system and Galactic
foreground emissions and must arise from extragalactic sources.Comment: Ap.J.Letters, in pres
Dynamical Mean Field Theory for the Bose-Hubbard Model
The dynamical mean field theory (DMFT), which is successful in the study of
strongly correlated fermions, was recently extended to boson systems [Phys.
Rev. B {\textbf 77}, 235106 (2008)]. In this paper, we employ the bosonic DMFT
to study the Bose-Hubbard model which describes on-site interacting bosons in a
lattice. Using exact diagonalization as the impurity solver, we get the DMFT
solutions for the Green's function, the occupation density, as well as the
condensate fraction on a Bethe lattice. Various phases are identified: the Mott
insulator, the Bose-Einstein condensed (BEC) phase, and the normal phase. At
finite temperatures, we obtain the crossover between the Mott-like regime and
the normal phase, as well as the BEC-to-normal phase transition. Phase diagrams
on the plane and on the plane are
produced ( is the scaled hopping amplitude). We compare our results
with the previous ones, and discuss the implication of these results to
experiments.Comment: 11 pages, 8 figure
Cosmic Infrared Background Fluctuations and Zodiacal Light
We have performed a specific observational test to measure the effect that
the zodiacal light can have on measurements of the spatial fluctuations of the
near-IR background. Previous estimates of possible fluctuations caused by
zodiacal light have often been extrapolated from observations of the thermal
emission at longer wavelengths and low angular resolution, or from IRAC
observations of high latitude fields where zodiacal light is faint and not
strongly varying with time. The new observations analyzed here target the
COSMOS field, at low ecliptic latitude where the zodiacal light intensity
varies by factors of over the range of solar elongations at which the
field can be observed. We find that the white noise component of the spatial
power spectrum of the background is correlated with the modeled zodiacal light
intensity. Roughly half of the measured white noise is correlated with the
zodiacal light, but a more detailed interpretation of the white noise is
hampered by systematic uncertainties that are evident in the zodiacal light
model. At large angular scales () where excess power above the
white noise is observed, we find no correlation of the power with the modeled
intensity of the zodiacal light. This test clearly indicates that the large
scale power in the infrared background is not being caused by the zodiacal
light.Comment: 17 pp. Accepted for publication in the Ap
- …