7 research outputs found

    Multidecadal Basal Melt Rates and Structure of the Ross Ice Shelf, Antarctica, Using Airborne Ice Penetrating Radar

    Get PDF
    Basal melting of ice shelves is a major source of mass loss from the Antarctic Ice Sheet. In situ measurements of ice shelf basal melt rates are sparse, while the more extensive estimates from satellite altimetry require precise information about firn density and characteristics of near‐surface layers. We describe a novel method for estimating multidecadal basal melt rates using airborne ice penetrating radar data acquired during a 3‐year survey of the Ross Ice Shelf. These data revealed an ice column with distinct upper and lower units whose thicknesses change as ice flows from the grounding line toward the ice front. We interpret the lower unit as continental meteoric ice that has flowed across the grounding line and the upper unit as ice formed from snowfall onto the relatively flat ice shelf. We used the ice thickness difference and strain‐induced thickness change of the lower unit between the survey lines, combined with ice velocities, to derive basal melt rates averaged over one to six decades. Our results are similar to satellite laser altimetry estimates for the period 2003–2009, suggesting that the Ross Ice Shelf melt rates have been fairly stable for several decades. We identify five sites of elevated basal melt rates, in the range 0.5–2 m a⁻Âč, near the ice shelf front. These hot spots indicate pathways into the sub‐ice‐shelf ocean cavity for warm seawater, likely a combination of summer‐warmed Antarctic Surface Water and modified Circumpolar Deep Water, and are potential areas of ice shelf weakening if the ocean warms

    Constraints on the Timing and Extent of Deglacial Grounding Line Retreat in West Antarctica

    Get PDF
    Projections of Antarctica\u27s contribution to future sea level rise are associated with significant uncertainty, in part because the observational record is too short to capture long-term processes necessary to estimate ice mass changes over societally relevant timescales. Records of grounding line retreat from the geologic past offer an opportunity to extend our observations of these processes beyond the modern record and to gain a more comprehensive understanding of ice-sheet change. Here, we present constraints on the timing and inland extent of deglacial grounding line retreat in the southern Ross Sea, Antarctica, obtained via direct sampling of a subglacial lake located 150 km inland from the modern grounding line and beneath \u3e1 km of ice. Isotopic measurements of water and sediment from the lake enabled us to evaluate how the subglacial microbial community accessed radiocarbon-bearing organic carbon for energy, as well as where it transferred carbon metabolically. Using radiocarbon as a natural tracer, we found that sedimentary organic carbon was microbially translocated to dissolved carbon pools in the subglacial hydrologic system during the 4.5-year period of water accumulation prior to our sampling. This finding indicates that the grounding line along the Siple Coast of West Antarctica retreated more than 250 km inland during the mid-Holocene (6.3 ± 1.0 ka), prior to re-advancing to its modern position

    Quantification des processus responsables de l’accĂ©lĂ©ration des glaciers Ă©missaires par mĂ©thodes inverses

    No full text
    The current global warming has direct consequences on ice-sheet mass loss. Reproducing the responsible mechanisms and forecasting the potential ice-sheets contribution to 21st century sea level rise is one of the major challenges in ice-sheet and ice flow modelling. Ice flow models are now routinely used to forecast the potential ice-sheets contribution to sea level rise. Such short term simulations are very sensitive to model initial state, usually build from field observations. However, some parameters, such as the basal friction between icesheet and bedrock as well as the basal topography, are still badly known because of a lake of direct observations or large uncertainty on measurements. Improving the knowledge of these two parameters for Greenland and Antarctica is therefore a prerequisite for making reliable projections. Data assimilation and inverse methods have been developed in order to overcome this problem. This thesis presents two different assimilation algorithms to better constrain simulaneouslybasal friction and bedrock elevation parameters using surface observations. The first algorithm is entierly based on adjoint method while the second algorithm uses a cycling method coupling inversion of basal friction with adjoint method and inversion of bedrock topography with nudging method. Both algorithms have been implemented in the finite element ice sheet and ice flow model Elmer/Ice and tested in a twin experiment showing a clear improvement of both parameters knowledge. The application of both algorithms to regions such as the Wilkes Land in Antartica reduces the uncertainty on basal conditions, for instance providing more details to the bedrock geometry when compared to usual DEM. Moreover,the reconstruction of both bedrock elevation and basal friction significantly decreases ice flux divergence anomalies when compared to classical methods where only friction is inversed. We finaly sudy the impact of such inversion on pronostic simulation in order to compare the efficiency of the two algorithms to better constrain future ice-sheet contribution to sea level rise.Le rĂ©chauffement climatique actuel a une consĂ©quence directe sur la perte de masse des calottes polaires. Reproduire les mĂ©canismes responsables de cette perte de masse et prĂ©voir la contribution des calottes Ă  l’élĂ©vation du niveau des ocĂ©ans d’ici la fin du siĂšcle est dĂšs lors l’un des dĂ©fis majeurs de la modĂ©lisation de l’écoulement des calottes polaires. Les modĂšles d’écoulement permettent de rĂ©aliser de telles prĂ©visions mais ces simulations, Ă  court terme, sont trĂšs sensibles Ă  leur Ă©tat initial habituellement construit Ă  partir d’observations de terrain. Malheureusement, certains paramĂštres comme le frottement entre la glace et le socle rocheux ainsi que la topographie basale sont souvent mĂ©connus Ă  cause du manque d’observations directes ou des larges incertitudes liĂ©es Ă  ces observations. AmĂ©liorer la connaissance de ces deux paramĂštres Ă  la fois pour le Groenland et l’Antarctique est donc un prĂ©-requis pour rĂ©aliser des projections fiables. Les mĂ©thodes d’assimilation de donnĂ©es et les mĂ©thodes inverses permettent alors de surmonter ce problĂšme.Cette thĂšse prĂ©sente deux algorithmes d’assimilation de donnĂ©es permettant de mieux contraindre simultanĂ©ment le frottement basal et la topographie basale Ă  partir d’observations de surface. L’un des algorithmes est entiĂšrement basĂ© sur la mĂ©thode adjointe tandis que le second se base sur une mĂ©thode cyclique couplant l’inversion du frottement basal avec la mĂ©thode adjointe et l’inversion de la gĂ©omĂ©trie basale Ă  l’aide de la relaxation newtonienne. Les deux algorithmes ont Ă©tĂ© implĂ©mentĂ©s dans le modĂšle d’écoulement de glace Ă©lĂ©ments finis Elmer/Ice et testĂ©s dans une expĂ©rience jumelle qui montre une nette amĂ©lioration de la connaissance des deux paramĂštres recherchĂ©s. L’application des deux algorithmes Ă  la rĂ©gion de la Terre de Wilkes rĂ©duit l’incertitude liĂ©e aux conditions basales en permettant, par exemple, d’obtenir plus de dĂ©tails sur la gĂ©omĂ©trie basale en comparaison avec les modĂšles numĂ©riques de terrain habituels. De plus la reconstruction simultanĂ©e du frottement et de la gĂ©omĂ©trie basale permet de rĂ©duire significativement les anomalies de divergence de flux habituellement obtenues lors de l’inversion du frottement seul. Nous Ă©tudions finalement l’impact des conditions basales ainsi inversĂ©es sur des simulations pronostiques afin de comparer la capacitĂ© des deux algorithmes Ă  mieux contraindre la contribution future des calottes polaires Ă  l’augmentation du niveau des ocĂ©ans

    Quantifying the processes at the root of the observed acceleration of icestreams from inverse methods

    No full text
    Le rĂ©chauffement climatique actuel a une consĂ©quence directe sur la perte de masse des calottes polaires. Reproduire les mĂ©canismes responsables de cette perte de masse et prĂ©voir la contribution des calottes Ă  l’élĂ©vation du niveau des ocĂ©ans d’ici la fin du siĂšcle est dĂšs lors l’un des dĂ©fis majeurs de la modĂ©lisation de l’écoulement des calottes polaires. Les modĂšles d’écoulement permettent de rĂ©aliser de telles prĂ©visions mais ces simulations, Ă  court terme, sont trĂšs sensibles Ă  leur Ă©tat initial habituellement construit Ă  partir d’observations de terrain. Malheureusement, certains paramĂštres comme le frottement entre la glace et le socle rocheux ainsi que la topographie basale sont souvent mĂ©connus Ă  cause du manque d’observations directes ou des larges incertitudes liĂ©es Ă  ces observations. AmĂ©liorer la connaissance de ces deux paramĂštres Ă  la fois pour le Groenland et l’Antarctique est donc un prĂ©-requis pour rĂ©aliser des projections fiables. Les mĂ©thodes d’assimilation de donnĂ©es et les mĂ©thodes inverses permettent alors de surmonter ce problĂšme.Cette thĂšse prĂ©sente deux algorithmes d’assimilation de donnĂ©es permettant de mieux contraindre simultanĂ©ment le frottement basal et la topographie basale Ă  partir d’observations de surface. L’un des algorithmes est entiĂšrement basĂ© sur la mĂ©thode adjointe tandis que le second se base sur une mĂ©thode cyclique couplant l’inversion du frottement basal avec la mĂ©thode adjointe et l’inversion de la gĂ©omĂ©trie basale Ă  l’aide de la relaxation newtonienne. Les deux algorithmes ont Ă©tĂ© implĂ©mentĂ©s dans le modĂšle d’écoulement de glace Ă©lĂ©ments finis Elmer/Ice et testĂ©s dans une expĂ©rience jumelle qui montre une nette amĂ©lioration de la connaissance des deux paramĂštres recherchĂ©s. L’application des deux algorithmes Ă  la rĂ©gion de la Terre de Wilkes rĂ©duit l’incertitude liĂ©e aux conditions basales en permettant, par exemple, d’obtenir plus de dĂ©tails sur la gĂ©omĂ©trie basale en comparaison avec les modĂšles numĂ©riques de terrain habituels. De plus la reconstruction simultanĂ©e du frottement et de la gĂ©omĂ©trie basale permet de rĂ©duire significativement les anomalies de divergence de flux habituellement obtenues lors de l’inversion du frottement seul. Nous Ă©tudions finalement l’impact des conditions basales ainsi inversĂ©es sur des simulations pronostiques afin de comparer la capacitĂ© des deux algorithmes Ă  mieux contraindre la contribution future des calottes polaires Ă  l’augmentation du niveau des ocĂ©ans.The current global warming has direct consequences on ice-sheet mass loss. Reproducing the responsible mechanisms and forecasting the potential ice-sheets contribution to 21st century sea level rise is one of the major challenges in ice-sheet and ice flow modelling. Ice flow models are now routinely used to forecast the potential ice-sheets contribution to sea level rise. Such short term simulations are very sensitive to model initial state, usually build from field observations. However, some parameters, such as the basal friction between icesheet and bedrock as well as the basal topography, are still badly known because of a lake of direct observations or large uncertainty on measurements. Improving the knowledge of these two parameters for Greenland and Antarctica is therefore a prerequisite for making reliable projections. Data assimilation and inverse methods have been developed in order to overcome this problem. This thesis presents two different assimilation algorithms to better constrain simulaneouslybasal friction and bedrock elevation parameters using surface observations. The first algorithm is entierly based on adjoint method while the second algorithm uses a cycling method coupling inversion of basal friction with adjoint method and inversion of bedrock topography with nudging method. Both algorithms have been implemented in the finite element ice sheet and ice flow model Elmer/Ice and tested in a twin experiment showing a clear improvement of both parameters knowledge. The application of both algorithms to regions such as the Wilkes Land in Antartica reduces the uncertainty on basal conditions, for instance providing more details to the bedrock geometry when compared to usual DEM. Moreover,the reconstruction of both bedrock elevation and basal friction significantly decreases ice flux divergence anomalies when compared to classical methods where only friction is inversed. We finaly sudy the impact of such inversion on pronostic simulation in order to compare the efficiency of the two algorithms to better constrain future ice-sheet contribution to sea level rise

    Annual cycle in flow of Ross Ice Shelf, Antarctica: contribution of variable basal melting

    No full text
    International audienceIce shelves play a critical role in modulating dynamic loss of ice from the grounded portion of the Antarctic Ice Sheet and its contribution to sea-level rise. Measurements of ice-shelf motion provide insights into processes modifying buttressing. Here we investigate the effect of seasonal variability of basal melting on ice flow of Ross Ice Shelf. Velocities were measured from November 2015 to December 2016 at 12 GPS stations deployed from the ice front to 430 km upstream. The flow-parallel velocity anomaly at each station, relative to the annual mean, was small during early austral summer (November-January), negative during February-April, and positive during austral winter (May-September). The maximum velocity anomaly reached several metres per year at most stations. We used a 2-D ice-sheet model of the RIS and its grounded tributaries to explore the seasonal response of the ice sheet to time-varying basal melt rates. We find that melt-rate response to changes in summer upper-ocean heating near the ice front will affect the future flow of RIS and its tributary glaciers. However, modelled seasonal flow variations from increased summer basal melting near the ice front are much smaller than observed, suggesting that other as-yet-unidentified seasonal processes are currently dominant
    corecore