15 research outputs found

    Garlic bioactive substances and their therapeutic applications for improving human health: a comprehensive review

    Get PDF
    Garlic (Allium sativum L.) is a widely abundant spice, known for its aroma and pungent flavor. It contains several bioactive compounds and offers a wide range of health benefits to humans, including those pertaining to nutrition, physiology, and medicine. Therefore, garlic is considered as one of the most effective disease-preventive diets. Many in vitro and in vivo studies have reported the sulfur-containing compounds, allicin and ajoene, for their effective anticancer, anti-diabetic, anti-inflammatory, antioxidant, antimicrobial, immune-boosting, and cardioprotective properties. As a rich natural source of bioactive compounds, including polysaccharides, saponins, tannins, linalool, geraniol, phellandrene, β-phellandrene, ajoene, alliin, S-allyl-mercapto cysteine, and β-phellandrene, garlic has many therapeutic applications and may play a role in drug development against various human diseases. In the current review, garlic and its major bioactive components along with their biological function and mechanisms of action for their role in disease prevention and therapy are discussed

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Olive Performance under the Soil Application of Humic Acid and the Spraying of Titanium and Zinc Nanoparticles under Soil Salinity Stress

    No full text
    Salinity is a major social, economic, and environmental menace in climates with low rainfall and high evapotranspiration, and it influences plant growth and causes restriction to crop production in the world. Additionally, under salinity stress, numerous physiological processes such as photosynthesis, biomass accumulation, and photosynthate transfer are also harshly lessened, and it also limits the absorption of adequate water by plants and leads to a dimension in plant water status. Therefore, the current study was conducted to investigate the soil application of humic acid (HA) at 0, 0.5, 1 and 2 kg/tree alone or in combination with the foliar spraying of 0 mg ZnO2 + 0 mg TiO2, 200 mg ZnO2 + 60 mg TiO2 and/or 300 mg ZnO2 + 80 mg TiO2 through the two successive seasons 2022 and 2023. The results demonstrated that the use of HA alone or in combination with the spraying of TiO2 and ZnO2 greatly improved the leaf chlorophyll, flower number, fruit set percentages, fruit yields in kg or in ton per hectare, fruit weight, fruit size, and fruit firmness. Additionally, the same used treatments greatly improved the fruit content from TSS and oil percentages and also the leaf mineral content from N, P and K, while they minimized the fruit drop percentage and fruit moisture content as compared to control. The most positive influence was observed with the soil implementation of 2 kg HA combined with 300 mg ZnO2 + 80 mg TiO2 in the two experimental seasons

    Apricot (<i>Prunus armeniaca</i>) Performance under Foliar Application of Humic Acid, Brassinosteroids, and Seaweed Extract

    No full text
    The excessive use of chemical fertilizers in fruit orchards has led to numerous problems for the environment, produce quality, and food safety. It also negatively affects soil health, beneficial microorganisms, and ground water quality, hence the resurgence of the application of biostimulants as ecofriendly ways to improve the growth, yield, and fruit quality of tree fruits. The current study was performed during 2021 and 2022 to investigate the influence of foliar spraying of 500, 1000, and 2000 mg/L humic acid (HA); 0.5, 1, and 2 mg/L brassinosteroids (Brs); and 1000, 2000, and 3000 mg/L seaweed extract (SWE) compared with a control (untreated trees) in terms of the performance of an apricot (Prunus armeniaca) cv. Canino. The obtained results show that the spraying of HA, Brs, and SWE positively increased the shoot length, leaf area, leaf chlorophyll content, fruit set, fruit yields, and fruit physical and chemical characteristics, as well as leaf macro- or micronutrients contents compared with those untreated trees during both study years. Moreover, the increase in parameter values was parallel to the increase in the used concentrations of HA, Brs, or SWE, where 2000 mg/L HA, 2 mg/L Brs, and 3000 mg/L SWE were superior to 1000 mg/L HA, 1 mg/L Brs, and 2000 mg/L SWE, which were better than 500 mg/L HA, 0.5 mg/L Brs, and 1000 mg/L SWE

    Growth Performance of Guava Trees after the Exogenous Application of Amino Acids Glutamic Acid, Arginine, and Glycine

    No full text
    A 2020–2021 study was performed on five-year-old guava trees to examine the influence of the foliar application of three amino acids, glycine, arginine, and glutamic acid, at a concentration of 500 or 1000 ppm. Additionally, two combinations of the three mentioned amino acids were also applied: 500 glycine + 500 arginine + 500 glutamic acid (combination 1) and 1000 glycine + 1000 arginine + 1000 glutamic acid (combination 2), and compared with a control (untreated trees). The results indicated that the application of the three amino acids, solely or in combination, was effective at increasing the shoot length, shoot diameter, and leaf chlorophyll. Additionally, the applied treatments also improved markedly the fruit set percentage, fruit yield, fruit firmness, fruit content of total soluble solids (TSS %), vitamin C (VC), and total sugars as well as the leaf mineral content (nitrogen, potassium, and phosphorus) compared with untreated trees in 2020 and 2021. Moreover, the results indicated that the combinations were more effective than individual applications and that glycine had a greater influence than arginine or glutamic acid, particularly when it was applied at 1000 ppm

    The Effect of Different Stratification and Scarification Treatments on Breaking the Dormancy of Saskatoon Berry Seeds

    No full text
    Saskatoon berry has become as important as a commercial fruit crop. One main goal is to release new plant cultivars well adapted to different climatic and soil conditions. Dormant seeds obtained from breeding are serious problems delaying the program. The seeds were directly extracted from fruits after harvest (unstored) or after storage at −18 °C for 6 months (stored) and subjected to modified stratification (3 °C) with KNO3, H2O2, NO, smoke-water (SW) or scarification using sandpaper or H2SO4 for 10, 20, 30, 40 min or treatments with pulsed radio frequency (PRF) or red light. The seeds were also subjected to warm–cool stratification (20/3 °C). Unstored seeds germinated in a higher percentage and with better uniformity (T75–T25) than stored seeds. Stored seeds positively affected the onset of seed germination (T1) and mean germination time (MGT). Dormancy breakage was promoted by stratification with KNO3, SW or scarification with sandpaper, H2SO4 or treatments with PRF. The recommended method for the breeding program of breaking seeds dormancy is when unstored seeds are subjected to stratification in KNO3 (0.2%) or SW (1:100). Depending on the applied methods, the percentage of seeds’ germination increased to 87% compared to untreated (64%) control seeds. The positive effects of the selected methods persisted during seedling development by stimulating their growth and enhancing the chlorophyll content index (SPAD) and effective quantum yield of PSII of chlorophyll in leaves (ΦPSII)

    Effect of Some Biostimulants on the Vegetative Growth, Yield, Fruit Quality Attributes and Nutritional Status of Apple

    No full text
    Although the application of chemical fertilizers to crops promotes plant growth and yield, their continuous use affects soil heath and creates environmental pollution. On the other hand, plant biostimulants improve nutrients absorption, plant growth, yield and produce quality and are environment-friendly. Therefore, an experiment was conducted during 2021-22 to evaluate the effect of some biostimulants on the performance of the apple cv. Anna, planted in a sandy loam soil at Marsa Matruh governorate, Egypt. Ninety trees were randomly selected and sprayed with 4 or 6% moringa leaf extract (MLE), 0.3 or 0.4% seaweed extract (SWE), 1000 or 2000 mg L−1 Fulvic acid (FA), 4% MLE + 0.3% SWE + 1000 mg L−1 FA (combination 1), or 6% MLE + 0.4% SWE + 2000 mg L−1 FA (combination 2) before flowering, during full bloom and one month later and compared with a control (untreated trees). The results demonstrated that spraying MLE, SWE or FA or their combinations positively improved the vegetative growth, fruit set %, fruit yield and fruit physical and chemical characteristics as well as leaf nutritional status. The positive effect of MLE, SWE and FA was increased in parallel to an increase in the used concentration of each one of them. The highest increments in the measured parameters were accompanied by the application of combination 2 over the other treatments

    Preharvest Foliar Applications of Citric Acid, Gibberellic Acid and Humic Acid Improve Growth and Fruit Quality of ‘Le Conte’ Pear (<i>Pyrus communis</i> L.)

    No full text
    A two-year (2020-21) study was conducted to investigate the possibility of relying of ten-years old pear trees grown on sandy loam soil irrigated by drip on citric acid (CA), gibberellic acid (GA3) and humic acid (HA). The CA was applied at the concentrations of 500, 1000 and 1500 ppm, GA3 at 50, 100 and 150 ppm and HA at 3, 4 and 5%, whereas water spray was used as the control. The results of our study proved that CA, GA3 and HA improved the shoot length, shoot thickness, leaf area and leaf chlorophyll of pear as compared with the control. Moreover, they also positively increased the fruit set percentage and final yield of ‘Le Conte’ pear. The fruit weight, size and firmness were also improved under the influence of aforementioned treatments. The fruit soluble solids, total sugars, leaf nitrogen, leaf phosphorus and leaf potassium of pear were also enhanced as compared with the control. Additionally, spraying of GA3 at 150 ppm, as well as, HA at 5 and 4% were the superior treatments and showed the most significant impact on plant growth, yield, fruit quality and leaf mineral content of pear. This study provides a basis for the future elucidation of HA-, GA3- and CA-modulated molecular mechanisms in pear, which can make a significant contribution in the scientific community

    Wheat Straw Biochar Produced at a Low Temperature Enhanced Maize Growth and Yield by Influencing Soil Properties of <i>Typic calciargid</i>

    No full text
    Arid and semi-arid soils are low in organic matter and have poor fertility, making them a serious threat to crop production. Most organic amendments, such as crop residues and farmyard manure, are short lived because of rapid decomposition. Incubation and pot studies were conducted to assess the impact of wheat straw biochar (produced at 350 °C) on temporal changes in soil microbial biomass and fertility status and to evaluate the efficacy of biochar for maize production in the top layer of Typic calciargid. The incubation study compared four levels of biochar (control, 0.5, 1.0 and 2.0% on a w/w basis of soil) and two fertilizer rates, i.e., unfertilized (no NPK fertilizer) and fertilized (nitrogen, P2O5 and K2O with rates of 125, 80 and 52.5 mg kg−1 soil, respectively). After incubation, the 2.0% biochar significantly improved the soil cation exchange capacity, organic carbon and microbial biomass carbon by up to 35, 59 and 26%, respectively, while decreasing the soil pH by up to 1.5% compared to that of the control treatment. When fertilized, the 2.0% biochar improved the soil’s available phosphorous, extractable potassium and total nitrogen by up to 59, 39 and 28%, respectively, compared to those of the control. The results from the pot experiment showed that using the 1% biochar with fertilizer significantly increased the maize dry biomass and grain yield by up to 57 and 72%, respectively, compared to those of the control. Additionally, the nitrogen and phosphorus recoveries from the mineral fertilizers improved significantly (up to 26 and 38%, respectively) when using the 1.0% biochar compared to those of the control. Conclusively, the addition of 1.0% biochar significantly improved maize growth and yield by enhancing nutrient recovery from mineral fertilizer and improving soil properties

    Drones in Plant Disease Assessment, Efficient Monitoring, and Detection: A Way Forward to Smart Agriculture

    No full text
    Plant diseases are one of the major threats to global food production. Efficient monitoring and detection of plant pathogens are instrumental in restricting and effectively managing the spread of the disease and reducing the cost of pesticides. Traditional, molecular, and serological methods that are widely used for plant disease detection are often ineffective if not applied during the initial stages of pathogenesis, when no or very weak symptoms appear. Moreover, they are almost useless in acquiring spatialized diagnostic results on plant diseases. On the other hand, remote sensing (RS) techniques utilizing drones are very effective for the rapid identification of plant diseases in their early stages. Currently, drones, play a pivotal role in the monitoring of plant pathogen spread, detection, and diagnosis to ensure crops’ health status. The advantages of drone technology include high spatial resolution (as several sensors are carried aboard), high efficiency, usage flexibility, and more significantly, quick detection of plant diseases across a large area with low cost, reliability, and provision of high-resolution data. Drone technology employs an automated procedure that begins with gathering images of diseased plants using various sensors and cameras. After extracting features, image processing approaches use the appropriate traditional machine learning or deep learning algorithms. Features are extracted from images of leaves using edge detection and histogram equalization methods. Drones have many potential uses in agriculture, including reducing manual labor and increasing productivity. Drones may be able to provide early warning of plant diseases, allowing farmers to prevent costly crop failures
    corecore