3 research outputs found

    Gold(III) complexes for antitumor applications: An overview

    Get PDF
    Gold(III) complexes have emerged as a versatile and effective class of metal‐based anticancer agents. The development of various types of ligands capable of stabilizing the AuIII cation and preventing its reduction under physiological conditions, such as chelating nitrogen‐donors, dithiocarbamates and C^N cyclometalled ligands, has opened the way for the exploration of their potential intracellular targets and action mechanisms. At the same time, the bioconjugation of AuIII complexes has emerged as a promising strategy for improving the selectivity of this class of compounds for cancer cells over healthy tissues, and recent developments have shown that combining gold complexes with molecular structures that are specifically recognized by the cell can exploit the cell's own transport mechanisms to improve selective metal uptake

    Acridine-decorated cyclometallated gold(III) complexes: synthesis and anti-tumour investigations

    Get PDF
    (C^N) and (C^N^C) cyclometalated Au(III) represent a highly promising class of potential anticancer agents. We report here the synthesis of seven new cyclometalated Au(III) complexes with five of them bearing an acridine moiety attached via (N^O) or (N^N) chelates, acyclic amino carbenes (AAC) and N-heterocyclic carbenes (NHC). The antiproliferative properties of the different complexes were evaluated in vitro on a panel of cancer cells including leukaemia, lung and breast cancer cells. We observed a trend between the cytotoxicity and the intracellular gold uptake of some representative compounds of the series. Some of the acridine-decorated complexes were demonstrated to interact with ds-DNA using FRET-melting techniques
    corecore