5 research outputs found

    First Results of the Full-Scale OSQAR Photon Regeneration Experiment

    Full text link
    Recent intensive theoretical and experimental studies shed light on possible new physics beyond the standard model of particle physics, which can be probed with sub-eV energy experiments. In the second run of the OSQAR photon regeneration experiment, which looks for the conversion of photon to axion (or Axion-Like Particle), two spare superconducting dipole magnets of the Large Hadron Collider (LHC) have been used. In this paper we report on first results obtained from a light beam propagating in vacuum within the 9 T field of two LHC dipole magnets. No excess of events above the background was detected and the two-photon couplings of possible new scalar and pseudo-scalar particles could be constrained.Comment: 5 pages, 4 figures, Photon 2011 Conference, Submitted to JO

    Q-factor optimization of a tuning-fork/fiber sensor for shear-force detection

    No full text
    We present the results of an exptl. and theor. study on the optimum design of shear-force sensors, used in scanning probe microscopes. We have optimized a configuration consisting of a tuning-fork/fiber-tip assembly, achieving quality factors (Q) exceeding 8000, and have presented a theor. anal. of the design wherein the force holding the fiber and fork in contact is provided solely by elastic mech. deformation, which allows full control of the performance of the system. On this basis, we constructed a high-quality-factor configuration with the fiber glued onto the tuning fork. [on SciFinder (R)

    Cavity-Enhanced Frequency Comb Vernier Spectroscopy

    No full text
    Vernier spectroscopy is a frequency comb-based technique employing optical cavities for filtering of the comb and for enhancement of the interaction length with the sample. Depending on the ratio of the cavity free spectral range and the comb repetition rate, the cavity transmits either widely spaced individual comb lines (comb-resolved Vernier spectroscopy) or groups of comb lines, called Vernier orders (continuous-filtering Vernier spectroscopy, CF-VS). The cavity filtering enables the use of low-resolution spectrometers to resolve the individual comb lines or Vernier orders. Vernier spectroscopy has been implemented using various near- and mid-infrared comb sources for applications ranging from trace gas detection to precision spectroscopy. Here, we present the principles of the technique and provide a review of previous demonstrations of comb-resolved and continuous-filtering Vernier spectroscopy. We also demonstrate two new implementations of CF-VS: one in the mid-infrared, based on a difference frequency generation comb source, with a new and more robust detection system design, and the other in the near-infrared, based on a Ti:sapphire laser, reaching high sensitivity and the fundamental resolution limit of the technique.Originally included in thesis in manuscript form.</p

    Results of the 2nd run of OSQAR Photon Regeneration Experiment

    No full text
    Recent intensive theoretical and experimental studies shed light on possible new physics beyond the standard model of particle physics, which can be probed with sub-eV energy experiments. In the second run of the OSQAR photon regeneration experiment, which looks for the conversion of photon to axion (or Axion-Like Particle), two spare superconducting dipole magnets of the Large Hadron Collider (LHC) have been used. In this paper we report on first results obtained from a light beam propagating in vacuum within the 9 T field of two LHC dipole magnets. No excess of events above the background was detected and the two-photon couplings of possible new scalar and pseudo-scalar particles could be constrained.Recent intensive theoretical and experimental studies shed light on possible new physics beyond the standard model of particle physics, which can be probed with sub-eV energy experiments. In the second run of the OSQAR photon regeneration experiment, which looks for the conversion of photon to axion (or Axion-Like Particle), two spare superconducting dipole magnets of the Large Hadron Collider (LHC) have been used. In this paper we report on first results obtained from a light beam propagating in vacuum within the 9 T field of two LHC dipole magnets. No excess of events above the background was detected and the two-photon couplings of possible new scalar and pseudo-scalar particles could be constrained
    corecore