1,369 research outputs found

    Association Between Common Infections and Incident Post-Stroke Dementia:A Cohort Study Using the Clinical Practice Research Datalink

    Get PDF
    PURPOSE: To investigate the association between common infections and post-stroke dementia in a UK population-based cohort. MATERIALS AND METHODS: A total of 60,392 stroke survivors (51.2% male, median age 74.3 years, IQR 63.9-82.4 years) were identified using primary care records from the Clinical Practice Research Datalink (CPRD) linked to Hospital Episode Statistics (HES) with no history of dementia. Primary exposure was any GP-recorded infection (lower respiratory tract infection (LRTI), urinary tract infection (UTI) requiring antibiotics, skin and soft tissue infection requiring antibiotics) occurring after stroke. The primary outcome was incident all-cause dementia recorded in primary care records. In sensitivity analyses, we restricted to individuals with linked hospital records and expanded definitions to include ICD-10 coded hospital admissions. We used multivariable Cox regression to investigate the association between common infections and dementia occurring from 3 months to 5 years after stroke. RESULTS: Of 60,392 stroke survivors, 20,969 (34.7%) experienced at least one infection and overall 4512 (7.5%) developed dementia during follow-up. Early dementia (3 months to 1-year post-stroke) risk was increased in those with at least one GP-recorded infection (HR 1.44, 95% CI 1.21-1.71), with stronger associations when hospitalised infections were included (HR 1.84, 95% CI 1.58-2.14). Late dementia (1-5 years) was only associated with hospitalised, but not with GP-recorded, infections. CONCLUSION: There was evidence of an association between common infections and post-stroke dementia, strongest in the 3-12 months following stroke. Better understanding of this relationship could help inform knowledge of pathways to dementia post-stroke and targeting of preventive interventions

    Blended Learning: How do you optimise undergraduate student engagement?

    No full text
    Background: Blended learning is a combination of online and face-to-face learning and is increasingly of interest for use in undergraduate medical education. It has been used to teach clinical post-graduate students pharmacology but needs evaluation for its use in teaching pharmacology to undergraduate medical students, which represent a different group of students with different learning needs. Methods: An existing BSc-level module on neuropharmacology was redesigned using the Blended Learning Design Tool (BLEnDT), a tool which uses learning domains (psychomotor, cognitive and affective) to classify learning outcomes into those taught best by self-directed learning (online) or by collaborative learning (face-to-face). Two online courses were developed, one on Neurotransmitters and the other on Neurodegenerative Conditions. These were supported with face-to-face tutorials. Undergraduate students’ engagement with blended learning was explored by the means of three focus groups, the data from which were analysed thematically. Results: Five major themes emerged from the data 1) Purpose and Acceptability 2) Structure, Focus and Consolidation 3) Preparation and workload 4) Engagement with e-learning component 5) Future Medical Education. Conclusion: Blended learning was acceptable and of interest to undergraduate students learning this subject. They expressed a desire for more blended learning in their courses, but only if it was highly structured, of high quality and supported by tutorials. Students identified that the ’blend’ was beneficial rather than purely online learning

    Daily Changes of Resting Metabolic Rate in Elite Rugby Union Players

    Get PDF
    Introduction: Preparation for competitive contact sport has been extensively researched. There are, however, limited data to guide players as to how the demands of their sport affect the energy requirements of recovery. We aimed to provide novel data on changes in resting metabolic rate (RMR) in contact sport athletes and relate these to the physical demands of training and competition. Methods: Twenty-two elite professional Premiership Rugby Union players were recruited to the study. Indirect calorimetry (Vyntus CPX canopy; CareFusion) was used to measure RMR each morning of the competitive game week, in a fasted, rested state. External loads for training and game play were monitored and recorded using global positioning systems (Catapult Innovations, Australia), whereas internal loads were tracked using rate of perceived exertion scales. Collisions were reviewed and recorded by expert video analysts for contacts in general play (breakdown and tackle area) or the set piece (scrum or maul). Results: There were significant (P = 0.005) mean increases in RMR of approximately 231 kcal the morning after (game day [GD] + 1) and 3 d after the game (GD + 3), compared with the day before the game (GD − 1). The players were exposed to internal and external loads during the training week comparable to that of a match day; however, despite the equivocal loads between training and game play, there were no significant increases in RMR after training. Conclusion: The collisions experienced in rugby match play are likely to be responsible for the significant increases in RMR at GD + 1 and GD + 3. Consequently, the measurement of RMR via indirect calorimetry may provide a novel noninvasive measure of the effects of collisions. This study provides a novel insight to the energy requirements of recovering from contact sport

    Ultrafast optical rotations of electron spins in quantum dots

    Full text link
    Coherent manipulation of quantum bits (qubits) on time scales much shorter than the coherence time is a key prerequisite for quantum information processing. Electron spins in quantum dots (QDs) are particularly attractive for implementations of qubits. Efficient optical methods for initialization and readout of spins have been developed in recent years. Spin coherence times in the microsecond range have been demonstrated, so that spin control by picosecond optical pulses would be highly desirable. Then a large number of spin rotations could be performed while coherence is maintained. A major remaining challenge is demonstration of such rotations with high fidelity. Here we use an ensemble of QD electron spins focused into a small number of precession modes about a magnetic field by periodic optical pumping. We demonstrate ultrafast optical rotations of spins about arbitrary axes on a picosecond time scale using laser pulses as control fields.Comment: 10 pages, 4 figure

    "Fuel for the Damage Induced": Untargeted Metabolomics in Elite Rugby Union Match Play.

    Get PDF
    The metabolic perturbations caused by competitive rugby are not well characterized. Our aim is to utilize untargeted metabolomics to develop appropriate interventions, based on the metabolic fluctuations that occur in response to this collision-based team sport. Seven members of an English Premiership rugby squad consented to provide blood, urine, and saliva samples daily, over a competitive week including gameday (GD), with physical demands and dietary intake also recorded. Sample collection, processing and statistical analysis were performed in accordance with best practice set out by the metabolomics standards initiative employing 700 MHz NMR spectroscopy. Univariate and multivariate statistical analysis were employed to reveal the acute energy needs of this high intensity sport are met via glycolysis, the TCA cycle and gluconeogenesis. The recovery period after cessation of match play and prior to training recommencing sees a re-entry to gluconeogenesis, coupled with markers of oxidative stress, structural protein degradation, and reduced fatty acid metabolism. This novel insight leads us to propose that effective recovery from muscle damaging collisions is dependent upon the availability of glucose. An adjustment in the periodisation of carbohydrate to increase GD+1 provision may prevent the oxidation of amino acids which may also be crucial to allay markers of structural tissue degradation. Should we expand the 'Fuel for the work required' paradigm in collision-based team sports to include 'Fuel for the damage induced'

    Comparative physiology of Australian quolls (Dasyurus; Marsupialia)

    Get PDF
    Quolls (Dasyurus) are medium-sized carnivorous dasyurid marsupials. Tiger (3,840 g) and eastern quolls (780 g) are mesic zone species, northern quolls (516 g) are tropical zone, and chuditch (1,385 g) were once widespread through the Australian arid zone. We found that standard physiological variables of these quolls are consistent with allometric expectations for marsupials. Nevertheless, inter-specific patterns amongst the quolls are consistent with their different environments. The lower T ^sub b^ of northern quolls (34°C) may provide scope for adaptive hyperthermia in the tropics, and they use torpor for energy/water conservation, whereas the larger mesic species (eastern and tiger quolls) do not appear to. Thermolability varied from little in eastern (0.035°C °C^sup -1^) and tiger quolls (0.051°C ºC^sup -1^) to substantial in northern quolls (0.100°C ºC^sup -1^) and chuditch (0.146°C ºC^sup -1^), reflecting body mass and environment. Basal metabolic rate was higher for eastern quolls (0.662 ± 0.033 ml O^sub 2^ g^sup -1^ h^sup -1^), presumably reflecting their naturally cool environment. Respiratory ventilation closely matched metabolic demand, except at high ambient temperatures where quolls hyperventilated to facilitate evaporative heat loss; tiger and eastern quolls also salivated. A higher evaporative water loss for eastern quolls (1.43 ± 0.212 mg H^sub 2^O g^sup -1^ h^sup -1^) presumably reflects their more mesic distribution. The point of relative water economy was low for tiger (-1.3°C), eastern (-12.5°C) and northern (+3.3) quolls, and highest for the chuditch (+22.6°C). We suggest that these differences in water economy reflect lower expired air temperatures and hence lower respiratory evaporative water loss for the arid-zone chuditch relative to tropical and mesic quolls

    Trends in weight gain recorded in English primary care before and during the Coronavirus-19 pandemic: An observational cohort study using the OpenSAFELY platform.

    Get PDF
    BACKGROUND: Obesity and rapid weight gain are established risk factors for noncommunicable diseases and have emerged as independent risk factors for severe disease following Coronavirus Disease 2019 (COVID-19) infection. Restrictions imposed to reduce COVID-19 transmission resulted in profound societal changes that impacted many health behaviours, including physical activity and nutrition, associated with rate of weight gain. We investigated which clinical and sociodemographic characteristics were associated with rapid weight gain and the greatest acceleration in rate of weight gain during the pandemic among adults registered with an English National Health Service (NHS) general practitioner (GP) during the COVID-19 pandemic. METHODS AND FINDINGS: With the approval of NHS England, we used the OpenSAFELY platform inside TPP to conduct an observational cohort study of routinely collected electronic healthcare records. We investigated changes in body mass index (BMI) values recorded in English primary care between March 2015 and March 2022. We extracted data on 17,742,365 adults aged 18 to 90 years old (50.1% female, 76.1% white British) registered with an English primary care practice. We estimated individual rates of weight gain before (δ-prepandemic) and during (δ-pandemic) the pandemic and identified individuals with rapid weight gain (>0.5 kg/m2/year) in each period. We also estimated the change in rate of weight gain between the prepandemic and pandemic period (δ-change = δ-pandemic-δ-prepandemic) and defined extreme accelerators as the 10% of individuals with the greatest increase in their rate of weight gain (δ-change ≥1.84 kg/m2/year) between these periods. We estimated associations with these outcomes using multivariable logistic regression adjusted for age, sex, index of multiple deprivation (IMD), and ethnicity. P-values were generated in regression models. The median BMI of our study population was 27.8 kg/m2, interquartile range (IQR) [24.3, 32.1] in 2019 (March 2019 to February 2020) and 28.0 kg/m2, IQR [24.4, 32.6] in 2021. Rapid pandemic weight gain was associated with sex, age, and IMD. Male sex (male versus female: adjusted odds ratio (aOR) 0.76, 95% confidence interval (95% CI) [0.76, 0.76], p < 0.001), older age (e.g., 50 to 59 years versus 18 to 29 years: aOR 0.60, 95% CI [0.60, 0.61], p < 0.001]); and living in less deprived areas (least-deprived-IMD-quintile versus most-deprived: aOR 0.77, 95% CI [0.77, 0.78] p < 0.001) reduced the odds of rapid weight gain. Compared to white British individuals, all other ethnicities had lower odds of rapid pandemic weight gain (e.g., Indian versus white British: aOR 0.69, 95% CI [0.68, 0.70], p < 0.001). Long-term conditions (LTCs) increased the odds, with mental health conditions having the greatest effect (e.g., depression (aOR 1.18, 95% CI [1.17, 1.18], p < 0.001)). Similar characteristics increased odds of extreme acceleration in the rate of weight gain between the prepandemic and pandemic periods. However, changes in healthcare activity during the pandemic may have introduced new bias to the data. CONCLUSIONS: We found female sex, younger age, deprivation, white British ethnicity, and mental health conditions were associated with rapid pandemic weight gain and extreme acceleration in rate of weight gain between the prepandemic and pandemic periods. Our findings highlight the need to incorporate sociodemographic, physical, and mental health characteristics when formulating research, policies, and interventions targeting BMI in the period of post pandemic service restoration and in future pandemic planning
    • …
    corecore