933 research outputs found

    Quantum control of hybrid nuclear-electronic qubits

    Full text link
    Pulsed magnetic resonance is a wide-reaching technology allowing the quantum state of electronic and nuclear spins to be controlled on the timescale of nanoseconds and microseconds respectively. The time required to flip either dilute electronic or nuclear spins is orders of magnitude shorter than their decoherence times, leading to several schemes for quantum information processing with spin qubits. We investigate instead the novel regime where the eigenstates approximate 50:50 superpositions of the electronic and nuclear spin states forming "hybrid nuclear-electronic" qubits. Here we demonstrate quantum control of these states for the first time, using bismuth-doped silicon, in just 32 ns: this is orders of magnitude faster than previous experiments where pure nuclear states were used. The coherence times of our states are five orders of magnitude longer, reaching 4 ms, and are limited by the naturally-occurring 29Si nuclear spin impurities. There is quantitative agreement between our experiments and no-free-parameter analytical theory for the resonance positions, as well as their relative intensities and relative Rabi oscillation frequencies. In experiments where the slow manipulation of some of the qubits is the rate limiting step, quantum computations would benefit from faster operation in the hybrid regime.Comment: 20 pages, 8 figures, new data and simulation

    Controlling spin relaxation with a cavity

    Get PDF
    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the spontaneous emission rate can be strongly enhanced by placing the quantum system in a resonant cavity -an effect which has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, underpinning single-photon sources. Here we report the first application of these ideas to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity of high quality factor and small mode volume, we reach for the first time the regime where spontaneous emission constitutes the dominant spin relaxation mechanism. The relaxation rate is increased by three orders of magnitude when the spins are tuned to the cavity resonance, showing that energy relaxation can be engineered and controlled on-demand. Our results provide a novel and general way to initialise spin systems into their ground state, with applications in magnetic resonance and quantum information processing. They also demonstrate that, contrary to popular belief, the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point where quantum fluctuations have a dramatic effect on the spin dynamics; as such our work represents an important step towards the coherent magnetic coupling of individual spins to microwave photons.Comment: 8 pages, 6 figures, 1 tabl

    The influence of sentinel lymph node tumour burden on additional lymph node involvement and disease-free survival in cutaneous melanoma – a retrospective analysis of 392 cases

    Get PDF
    Twenty per cent of sentinel lymph node (SLN)-positive melanoma patients have positive non-SLN lymph nodes in completion lymph node dissection (CLND). We investigated SLN tumour load, non-sentinel positivity and disease-free survival (DFS) to assess whether certain patients could be spared CLND. Sentinel lymph node biopsy was performed on 392 patients between 1999 and 2005. Median observation period was 38.8 months. Sentinel lymph node tumour load did not predict non-SLN positivity: 30.8% of patients with SLN macrometastases (⩾2 mm) and 16.4% with micrometastases (⩽2 mm) had non-SLN positivity (P=0.09). Tumour recurrences after positive SLNs were more than twice as frequent for SLN macrometastases (51.3%) than for micrometastases (24.6%) (P=0.005). For patients with SLN micrometastases, the DFS analysis was worse (P=0.003) when comparing those with positive non-SLNs (60% recurrences) to those without (17.6% recurrences). This difference did not translate into significant differences in DFS: patients with SLN micrometastasis, either with (P=0.022) or without additional positive non-SLNs (P<0.0001), fared worse than patients with tumour-free SLNs. The 2-mm cutoff for SLN tumour load accurately predicts differences in DFS. Non-SLN positivity in CLND, however, cannot be predicted. Therefore, contrary to other studies, no recommendations concerning discontinuation of CLND based on SLN tumour load can be deduced

    Thick primary melanoma has a heterogeneous tumor biology: an institutional series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thick melanomas (TM) ≥4 mm have a high risk for nodal and distant metastases. Optimal surgical management, prognostic significance of sentinel node biopsy (SLNB), and benefits of interferon (IFN) for these patients are unclear. As a continuum of increasing tumor thickness is placed into a single TM group, differences in biologic and clinical behavior may be lost. The purpose of this study was to better characterize the diverse biology in TM, including the value of increasing thickness and nodal status information, potentially identifying high risk TM subgroups that may warrant more aggressive treatment/follow up.</p> <p>Methods</p> <p>155 consecutive TM patients treated at a single institution between 1971 and 2007 were retrospectively reviewed. Patient, disease and treatment features were analyzed with respect to disease-free (DFS) and overall survival (OS).</p> <p>Results</p> <p>Median patient age was 66 years and 68% of patients were men. The trunk was the most common TM location (35%), followed by the head and neck (29%) and lower extremities (20%). Median thickness was 6 mm and 61% were ulcerated. 6% patients had stage IV disease, 12% had clinical nodal metastases. Clinically negative lymph node basins were treated by observation (22 patients - 15.4%), elective lymph node dissection (ELND) (24 patients - 17.6%) or SLNB (91 patients - 67%). 75% of ELND's and 53% of SLNB's were positive. Completion node dissection was performed in 38 SLNB+ patients and 22% had additional positive nodes. 17% of the study patients received IFN. At median follow up of 26 months, 5 year DFS and OS were 42% and 43.6%. For SLNB positive vs negative, median DFS were 22 vs 111 months (p = 0.006) and median OS were 41 vs 111 months (p = 0.006). When stratified by tumor thickness ≤ vs > 6 mm, 5 year DFS was 58.3% vs 20% (p < 0.0001) and OS was 62% vs 20% (P < 0.0001). IFN had no impact on DFS or OS (p = 0.98 and 0.8 respectively).</p> <p>Conclusion</p> <p>Within the high risk group of patients with TM, cases with tumor thickness > 6 mm or a positive SLNB had a significantly worse DFS and OS (p < .0001, <.0001 and .006, .006).</p

    Transit Photometry as an Exoplanet Discovery Method

    Full text link
    Photometry with the transit method has arguably been the most successful exoplanet discovery method to date. A short overview about the rise of that method to its present status is given. The method's strength is the rich set of parameters that can be obtained from transiting planets, in particular in combination with radial velocity observations; the basic principles of these parameters are given. The method has however also drawbacks, which are the low probability that transits appear in randomly oriented planet systems, and the presence of astrophysical phenomena that may mimic transits and give rise to false detection positives. In the second part we outline the main factors that determine the design of transit surveys, such as the size of the survey sample, the temporal coverage, the detection precision, the sample brightness and the methods to extract transit events from observed light curves. Lastly, an overview over past, current and future transit surveys is given. For these surveys we indicate their basic instrument configuration and their planet catch, including the ranges of planet sizes and stellar magnitudes that were encountered. Current and future transit detection experiments concentrate primarily on bright or special targets, and we expect that the transit method remains a principal driver of exoplanet science, through new discoveries to be made and through the development of new generations of instruments.Comment: Review chapte

    Coordination and resource-related difficulties encountered by Quebec's public health specialists and infectious diseases/medical microbiologists in the management of A (H1N1) - a mixed-method, exploratory survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Quebec, the influenza A (H1N1) pandemic was managed using a top-down style that left many involved players with critical views and frustrations. We aimed to describe physicians' perceptions - infectious diseases specialists/medical microbiologists (IDMM) and public health/preventive medicine specialists (PHPMS) - in regards to issues encountered with the pandemics management at the physician level and highlight suggested improvements for future healthcare emergencies.</p> <p>Methods</p> <p>In April 2010, Quebec IDMM and PHPMS physicians were invited to anonymously complete a web-based learning needs assessment. The survey included both open-ended and multiple-choice questions. Descriptive statistics were used to report on the frequency distribution of multiple choice responses whereas thematic content analysis was used to analyse qualitative data generated from the survey and help understand respondents' experience and perceptions with the pandemics.</p> <p>Results</p> <p>Of the 102 respondents, 85.3% reported difficulties or frustrations in their practice during the pandemic. The thematic analysis revealed two core themes describing the problems experienced in the pandemic management: coordination and resource-related difficulties. Coordination issues included communication, clinical practice guidelines, decision-making, roles and responsibilities, epidemiological investigation, and public health expert advisory committees. Resources issues included laboratory resources, patient management, and vaccination process.</p> <p>Conclusion</p> <p>Together, the quantitative and qualitative data suggest a need for improved coordination, a better definition of roles and responsibilities, increased use of information technologies, merged communications, and transparency in the decisional process. Increased flexibility and less contradiction in clinical practice guidelines from different sources and increased laboratory/clinical capacity were felt critical to the proper management of infectious disease emergencies.</p

    Planet Populations as a Function of Stellar Properties

    Full text link
    Exoplanets around different types of stars provide a window into the diverse environments in which planets form. This chapter describes the observed relations between exoplanet populations and stellar properties and how they connect to planet formation in protoplanetary disks. Giant planets occur more frequently around more metal-rich and more massive stars. These findings support the core accretion theory of planet formation, in which the cores of giant planets form more rapidly in more metal-rich and more massive protoplanetary disks. Smaller planets, those with sizes roughly between Earth and Neptune, exhibit different scaling relations with stellar properties. These planets are found around stars with a wide range of metallicities and occur more frequently around lower mass stars. This indicates that planet formation takes place in a wide range of environments, yet it is not clear why planets form more efficiently around low mass stars. Going forward, exoplanet surveys targeting M dwarfs will characterize the exoplanet population around the lowest mass stars. In combination with ongoing stellar characterization, this will help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet

    Antipsychotic withdrawal symptoms: Phenomenology and pathophysiology

    Full text link
    The authors review the literature discribing non-dyskinetic antipsychotic withdrawal phenomena. Withdrawal of these agents can cause nausea, emesis, anorexia, diarrhea, rhinorrhea, diaphoresis, myalgia, paresthesia, anxiety, agitation, restlessness, and insomnia. Psychotic relapse is often presaged by increased anxiety, agitation, restlessness and insomnia, but the temporal relationship of these prodromal symptoms to reduction in the dosage or discontinuation of neuroleptics distinguishes them from the effects of abrupt withdrawal.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65190/1/j.1600-0447.1988.tb05116.x.pd

    Effects of an amylopectin and chromium complex on the anabolic response to a suboptimal dose of whey protein

    Get PDF
    Background Previous research has demonstrated the permissive effect of insulin on muscle protein kinetics, and the enhanced insulin sensitizing effect of chromium. In the presence of adequate whole protein and/or essential amino acids (EAA), insulin has a stimulatory effect on muscle protein synthesis, whereas in conditions of lower blood EAA concentrations, insulin has an inhibitory effect on protein breakdown. In this study, we determined the effect of an amylopectin/chromium (ACr) complex on changes in plasma concentrations of EAA, insulin, glucose, and the fractional rate of muscle protein synthesis (FSR). Methods Using a double-blind, cross-over design, ten subjects (six men, four women) consumed 6 g whey protein + 2 g of the amylopectin-chromium complex (WPACr) or 6 g whey protein (WP) after an overnight fast. FSR was measured using a primed, continuous infusion of ring-d5-phenylalanine with serial muscle biopsies performed at 2, 4, and 8 h. Plasma EAA and insulin were assayed by ion-exchange chromatography and ELISA, respectively. After the biopsy at 4 h, subjects ingested their respective supplement, completed eight sets of bilateral isotonic leg extensions at 80% of their estimated 1-RM, and a final biopsy was obtained 4 h later. Results Both trials increased EAA similarly, with peak levels noted 30 min after ingestion. Insulin tended (p = 0.09) to be higher in the WPACr trial. Paired samples t-tests using baseline and 4-h post-ingestion FSR data separately for each group revealed significant increases in the WPACr group (+0.0197%/h, p = 0.0004) and no difference in the WP group (+0.01215%/hr, p = 0.23). Independent t-tests confirmed significant (p = 0.045) differences in post-treatment FSR between trials. Conclusions These data indicate that the addition of ACr to a 6 g dose of whey protein (WPACr) increases the FSR response beyond what is seen with a suboptimal dose of whey protein alone

    VADER: a variable dose-rate external 137Cs irradiator for internal emitter and low dose rate studies.

    Get PDF
    In the long term, 137Cs is probably the most biologically important agent released in many accidental (or malicious) radiation disasters. It can enter the food chain, and be consumed, or, if present in the environment (e.g. from fallout), can provide external irradiation over prolonged times. In either case, due to the high penetration of the energetic γ rays emitted by 137Cs, the individual will be exposed to a low dose rate, uniform, whole body, irradiation. The VADER (VAriable Dose-rate External 137Cs irradiatoR) allows modeling these exposures, bypassing many of the problems inherent in internal emitter studies. Making use of discarded 137Cs brachytherapy seeds, the VADER can provide varying low dose rate irradiations at dose rates of 0.1 to 1.2 Gy/day. The VADER includes a mouse "hotel", designed to allow long term simultaneous residency of up to 15 mice. Two source platters containing ~ 250 mCi each of 137Cs brachytherapy seeds are mounted above and below the "hotel" and can be moved under computer control to provide constant low dose rate or a varying dose rate mimicking 137Cs biokinetics in mouse or man. We present the VADER design and characterization of its performance over 18 months of use
    corecore