22 research outputs found

    Polymer Chain Generation for Coarse-Grained Models Using Radical-Like Polymerization

    Get PDF
    International audienceThis paper presents major improvements in the efficiency of the so-called Radical-Like Polymerization (RLP) algorithm proposed in ”Polymer chain generation for coarse-grained models using radical-like polymerization” [J. Chem. Phys. 128 (2008)]. Three enhancements are detailed in this paper: (1) the capture radius of a radical is enlarged to increase the probability of finding a neighboring monomer; (2) between each growth step, equilibration is now performed with increasing the relaxation time depending on the actual chain size; (3) the RLP algorithm is now fully parallelized and proposed as a “fix” within the “Lammps” molecular dynamics simulation suite

    Intéractions hydrodynamiques entre colloïdess confinés le long d'une paroi

    No full text
    Appliquer un champ électrique ou un gradient de température à une solution colloïdale implique la migration des particules (soluté) en suspension. Ce déplacement n’est pas la conséquence de forces de volume comme dans le cas de la sédimentation mais de forces interfaciales agissant sur la double couche électrique présente à la surface des particules colloïdales chargées. Ces forces induisent un écoulement de surface qui à son tour engendre un champ de vitesse du fluide en 1/r³ autour des particules dans la direction opposée à leurs déplacements, où r distance au centre des particules. Dans ce travail on considère une situation différente où la suspension est confinée dans un demi-espace infini limité par une paroi rigide. Un colloïde, sous l’action d’un champ extérieur, se dépose le long de la surface rigide. Bien qu’immobile le colloïde continue de pomper le fluide environnant. Il apparaît alors un écoulement latéral le long du mur et en direction du colloïde. D’autres colloïdes insérés dans un tel écoulement subissent une force hydrodynamique de trainée à l’origine de la formation d’agrégats. De tels agrégats ont été observés aussi bien lors de déposition électrophorétique que plus récemment lors de déposition thermophorétique pour des particules micrométriques en solution aqueuse. Le champ de vitesse confiné prend une forme plus complexe que dans le cas infini : il doit satisfaire à la fois la condition limite fixée à la surface de la particule et sur le mur. Deux méthodes perturbatives, la méthode des réflexions et la méthode d’Oseen, sont utilisées pour résoudre l’équation de Stokes et trouver une solution exacte pour l’écoulement autour du colloïde confiné en puissance de e = a/h rapport du rayon de la particule sur sa distance au mur. La solution usuelle à l’ordre zéro en e donne de pauvres résultats alors que les corrections suivantes donnent de meilleurs conclusions en accord avec les récentes mesures expérimentales de potentiel hydrodynamique de paire entre colloïdes sous champ confinés le long d’un mur.Applying a steady electric field or a constant thermal gradient to a colloidal suspension induces a finite velocity of the dispersed particles. The motion of particles is not due to a net body force like in sedimentation but to interfacial forces acting on the electric double layer at their surface. These forces involve a surface flow, which, in turn, results in a velocity field of the surrounding fluid in 1/r³ in the opposite direction of the particle displacement, with r the distance from the centre of the particle. In this work we consider a somewhat different situation, where the suspension is confined to a semi-infinite half space. The particle, under the action of the applied field, is trapped against the solid interface. Still, the creep flow remains; more precisely the particle continues to pump the fluid in the opposite direction. As a consequence there arises a lateral flow along the solid surface towards the particle. Thus others particles inserting themselves in this flow undergo drag forces and form clusters. Particles aggregation has been observed in Electrophoresis deposition and more recently in Thermophoresis deposition for micron sized polystyrene beads in aqueous solution. The total velocity field takes a form significantly more complicated than in the above mentioned unbounded cases; it must satisfy boundary conditions both at the particle surface and at the confining wall. Using the perturbative method of reflections or Oseen method based on Fourier transform we resolve the Stokes equation and find an analytic solution for the drag flow along the interface in powers of the ratio e=a/h of particle radius and wall distance. The usual solution at the zero order induces poor approximation, when following corrections in e involves better results in agreement with experimental measurements of hydrodynamic pair potential between two particles along a wall

    Intéractions hydrodynamiques entre colloïdess confinés le long d'une paroi

    No full text
    Appliquer un champ électrique ou un gradient de température à une solution colloïdale implique la migration des particules (soluté) en suspension. Ce déplacement n’est pas la conséquence de forces de volume comme dans le cas de la sédimentation mais de forces interfaciales agissant sur la double couche électrique présente à la surface des particules colloïdales chargées. Ces forces induisent un écoulement de surface qui à son tour engendre un champ de vitesse du fluide en 1/r³ autour des particules dans la direction opposée à leurs déplacements, où r distance au centre des particules. Dans ce travail on considère une situation différente où la suspension est confinée dans un demi-espace infini limité par une paroi rigide. Un colloïde, sous l’action d’un champ extérieur, se dépose le long de la surface rigide. Bien qu’immobile le colloïde continue de pomper le fluide environnant. Il apparaît alors un écoulement latéral le long du mur et en direction du colloïde. D’autres colloïdes insérés dans un tel écoulement subissent une force hydrodynamique de trainée à l’origine de la formation d’agrégats. De tels agrégats ont été observés aussi bien lors de déposition électrophorétique que plus récemment lors de déposition thermophorétique pour des particules micrométriques en solution aqueuse. Le champ de vitesse confiné prend une forme plus complexe que dans le cas infini : il doit satisfaire à la fois la condition limite fixée à la surface de la particule et sur le mur. Deux méthodes perturbatives, la méthode des réflexions et la méthode d’Oseen, sont utilisées pour résoudre l’équation de Stokes et trouver une solution exacte pour l’écoulement autour du colloïde confiné en puissance de e = a/h rapport du rayon de la particule sur sa distance au mur. La solution usuelle à l’ordre zéro en e donne de pauvres résultats alors que les corrections suivantes donnent de meilleurs conclusions en accord avec les récentes mesures expérimentales de potentiel hydrodynamique de paire entre colloïdes sous champ confinés le long d’un mur.Applying a steady electric field or a constant thermal gradient to a colloidal suspension induces a finite velocity of the dispersed particles. The motion of particles is not due to a net body force like in sedimentation but to interfacial forces acting on the electric double layer at their surface. These forces involve a surface flow, which, in turn, results in a velocity field of the surrounding fluid in 1/r³ in the opposite direction of the particle displacement, with r the distance from the centre of the particle. In this work we consider a somewhat different situation, where the suspension is confined to a semi-infinite half space. The particle, under the action of the applied field, is trapped against the solid interface. Still, the creep flow remains; more precisely the particle continues to pump the fluid in the opposite direction. As a consequence there arises a lateral flow along the solid surface towards the particle. Thus others particles inserting themselves in this flow undergo drag forces and form clusters. Particles aggregation has been observed in Electrophoresis deposition and more recently in Thermophoresis deposition for micron sized polystyrene beads in aqueous solution. The total velocity field takes a form significantly more complicated than in the above mentioned unbounded cases; it must satisfy boundary conditions both at the particle surface and at the confining wall. Using the perturbative method of reflections or Oseen method based on Fourier transform we resolve the Stokes equation and find an analytic solution for the drag flow along the interface in powers of the ratio e=a/h of particle radius and wall distance. The usual solution at the zero order induces poor approximation, when following corrections in e involves better results in agreement with experimental measurements of hydrodynamic pair potential between two particles along a wall

    Hydrodynamic attraction of immobile particles due to interfacial forces

    No full text
    Applying the method of reflections, we derive the flow pattern around a confined colloidal particle with quasislip conditions at its surface, in powers of the ratio a/h of particle radius and wall distance. The lowest order corresponds to a single reflection at the confining wall. Significant corrections occur at higher order: the linear term in a/h modifies the amplitudes of the well-known one-reflection approximation, whereas new features arise in quadratic order. Our results agree with recent experiments where thermo-osmosis drives hydrodynamic attractive forces in confined colloids

    Thermophoresis at a charged surface: the role of hydrodynamic slip

    No full text
    By matching boundary layer hydrodynamics with slippage to the force-free flow at larger distances, we obtain the thermophoretic mobility of charged particles as a function of the Navier slip length b. A moderate value of b augments Ruckenstein's result by a term 2b/λ where λ is the Debye length. If b exceeds the particle size a, the enhancement coefficient a/λ is independent of b but proportional to the particle size. Similar effects occur for transport driven by a salinity gradient or by an electric field

    Coarse-Grained Molecular Dynamics Modeling of Segmented Block Copolymers: Impact of the Chain Architecture on Crystallization and Morphology

    No full text
    International audienceWe extend our recent coarse-grained model describing semicrystalline homopolymers to simulate the morphology and phase transitions of thermoplastic elastomers made of segmented (hard/soft) block copolymers. The generic model is adapted to match the physical characteristics of the two chemical units involved in the copolymer chains by using classic scaling rules. We investigate the crystallization kinetics of the hard segments as well as their phase separation from the soft units in either triblock or pentablock copolymers. We identify the soft segment molecular weight as a key parameter resulting in the following observations when decreasing the temperature from a homogeneous state. On the one hand, the phase separation preceding the crystallization process in triblock copolymers results in a constant temperature of crystallization when varying the soft segment length. On the other hand, the limited phase separation achieved in pentablock copolymers constrains them to crystallize at progressively lower temperatures while increasing the soft segment length. Finally, increasing the soft segment molecular weight was found to lead to a higher relative crystallinity which can be interestingly related to a rise of the loop segment’s content

    Enhanced nucleation of bimodal molecular weight distribution polymers: A molecular dynamics study

    No full text
    We perform coarse-grained molecular dynamics (CGMD) simulations to study the homogeneous nucleation of bimodal and unimodal molecular weight distribution polymers with equivalent average molecular weight. First, a statistical method is proposed to determine the critical nuclei and thus calculate the free energy barrier of nucleation. From the temperature dependence of diffusion coefficient, we also determine the activation energy of diffusion. Then we calculate the nucleation rate and find that it is consistent with the classical nucleation theory for homogeneous nucleation in semi-crystalline polymers. Compared with unimodal system, the bimodal system exhibits lower interfacial free energy and consequently lower free energy barrier for nucleation, while the two systems have similar activation energy for diffusion. This suggests that the promoted nucleation rate of bimodal molecular weight distribution polymer is a result of the reduction of interfacial free energy, which is eventually a consequence of chain-folding nucleation of long chain component
    corecore